-
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathAudioManipulation.py
274 lines (217 loc) · 8.62 KB
/
AudioManipulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import torch
import numpy as np
import importlib
import subprocess
import sys
def check_import(importname, installname=None):
try:
importlib.import_module(importname)
except ModuleNotFoundError:
installname = installname if installname else importname
print(f"Required module '{importname}' not found. Please install it using 'pip install {installname}'.")
check_import("librosa", "librosa")
import librosa.effects
# -----------------
# AUDIO ARRANGEMENT
# -----------------
class JoinAudio:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"audio_1": ("AUDIO", ),
"audio_2": ("AUDIO", ),
"gap": ("INT", {"default": 0, "min": -1e9, "max": 1e9, "step": 1}),
"overlap_method": (("overwrite", "linear", "sigmoid"), {"default": "sigmoid"})
},
"optional": {
"sample_rate": ("INT", {"default": 44100, "min": 1, "max": 1e9, "step": 1, "forceInput": True}),
},
}
RETURN_TYPES = ("AUDIO", "INT")
RETURN_NAMES = ("🎙️joined_audio", "sample_rate")
FUNCTION = "join_audio"
CATEGORY = "🎙️Jags_Audio/Arrangement"
def join_audio(self, audio_1, audio_2, gap, overlap_method, sample_rate):
joined_length = audio_1.size(2) + audio_2.size(2) + gap
joined_tensor = torch.zeros((audio_1.size(0), audio_1.size(1), joined_length), device=audio_1.device)
tensor_1_masked = audio_1.clone()
tensor_2_masked = audio_2.clone()
# Overlapping
if gap < 0:
gap_abs = abs(gap)
mask = np.ones(gap_abs)
if overlap_method == 'linear':
mask = np.linspace(0.0, 1.0, num=gap_abs)
elif overlap_method == 'sigmoid':
k = 6
mask = np.linspace(-1.0, 1.0, num=gap_abs)
mask = 1 / (1 + np.exp(-mask * k))
mask = torch.from_numpy(mask).to(device=audio_1.device)
tensor_1_masked[:, :, -gap_abs:] *= 1.0 - mask
tensor_2_masked[:, :, :gap_abs] *= mask
joined_tensor[:, :, :audio_1.size(2)] += tensor_1_masked
joined_tensor[:, :, audio_1.size(2) + gap:] += tensor_2_masked
return joined_tensor, sample_rate
class BatchJoinAudio:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"batch_audio": ("AUDIO",),
"gap": ("INT", {"default": 0, "min": -1e9, "max": 1e9, "step": 1}),
"overlap_method": (("overwrite", "linear", "sigmoid"), {"default": "sigmoid"})
},
"optional": {
"sample_rate": ("INT", {"default": 44100, "min": 1, "max": 1e9, "step": 1, "forceInput": True}),
},
}
RETURN_TYPES = ("AUDIO", "INT")
RETURN_NAMES = ("🎙️joined_audio", "sample_rate")
FUNCTION = "batch_join_audio"
CATEGORY = "🎙️Jags_Audio/Arrangement"
def batch_join_audio(self, batch_audio, gap, overlap_method, sample_rate):
joined_length = batch_audio.size(2) * batch_audio.size(0) + gap * (batch_audio.size(0) - 1)
joined_tensor = torch.zeros((1, batch_audio.size(1), joined_length), device=batch_audio.device)
tensor_masked = batch_audio.clone()
# Overlapping
if gap < 0:
gap_abs = abs(gap)
mask = np.ones(gap_abs)
if overlap_method == 'linear':
mask = np.linspace(0.0, 1.0, num=gap_abs)
elif overlap_method == 'sigmoid':
k = 6
mask = np.linspace(-1.0, 1.0, num=gap_abs)
mask = 1 / (1 + np.exp(-mask * k))
mask = torch.from_numpy(mask).to(device=batch_audio.device)
tensor_masked[:-1, :, -gap_abs:] *= 1.0 - mask
tensor_masked[1:, :, :gap_abs] *= mask
for i, sample in enumerate(tensor_masked):
sample_start = (batch_audio.size(2) + gap) * i
sample_end = sample_start + batch_audio.size(2)
joined_tensor[:, :, sample_start:sample_end] += sample
return joined_tensor, sample_rate
class CutAudio:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"audio": ("AUDIO",),
"start": ("INT",),
"end": ("INT",),
},
"optional": {
"sample_rate": ("INT", {"default": 44100, "min": 1, "max": 1e9, "step": 1, "forceInput": True}),
},
}
RETURN_TYPES = ("AUDIO", "INT")
RETURN_NAMES = ("🎙️cut_audio", "sample_rate")
FUNCTION = "cut_audio"
CATEGORY = "🎙️Jags_Audio/Arrangement"
def cut_audio(self, audio, start, end, sample_rate):
return audio.clone()[:, :, start:end], sample_rate
class DuplicateAudio:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"audio": ("AUDIO",),
"count": ("INT", {"default": 1, "min": 1, "max": 1024, "step": 1}),
},
"optional": {
"sample_rate": ("INT", {"default": 44100, "min": 1, "max": 1e9, "step": 1, "forceInput": True}),
},
}
RETURN_TYPES = ("AUDIO", "INT")
RETURN_NAMES = ("🎙️out_audio", "sample_rate")
FUNCTION = "duplicate_audio"
CATEGORY = "🎙️Jags_Audio/Arrangement"
def duplicate_audio(self, audio, count, sample_rate):
return audio.repeat(count, 1, 1), sample_rate
# ------------------
# AUDIO MANIPULATION
# ------------------
class StretchAudio:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"audio": ("AUDIO", ),
"rate": ("FLOAT", {"default": 1.0, "min": 1e-9, "max": 1e9, "step": 0.1})
},
"optional": {
"sample_rate": ("INT", {"default": 44100, "min": 1, "max": 1e9, "step": 1, "forceInput": True}),
},
}
RETURN_TYPES = ("AUDIO", "INT")
RETURN_NAMES = ("🎙️audio", "sample_rate")
FUNCTION = "stretch_audio"
CATEGORY = "🎙️Jags_Audio/Manipulation"
def stretch_audio(self, audio, rate, sample_rate):
tensor = tensor.cpu().numpy()
#convert GPU tensor to CPU tensor for numpy else use a alternative method tensor.cuda().numpy ()
y = tensor.cpu().numpy()
y = librosa.effects.time_stretch(y, rate=rate)
tensor_out = torch.from_numpy(y).to(device=tensor.device)
return tensor_out, sample_rate
class ReverseAudio:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"audio": ("AUDIO",),
},
"optional": {
"sample_rate": ("INT", {"default": 44100, "min": 1, "max": 1e9, "step": 1, "forceInput": True}),
},
}
RETURN_TYPES = ("AUDIO", "INT")
RETURN_NAMES = ("🎙️audio", "sample_rate")
FUNCTION = "reverse_audio"
CATEGORY = "🎙️Jags_Audio/Manipulation"
def reverse_audio(self, audio, sample_rate):
return torch.flip(audio.clone(), (2,)), sample_rate
class ResampleAudio:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"audio": ("AUDIO",),
"sample_rate": ("INT", {"default": 44100, "min": 1, "max": 1e9, "step": 1}),
"sample_rate_target": ("INT", {"default": 44100, "min": 1, "max": 1e9, "step": 1}),
},
"optional": {},
}
RETURN_TYPES = ("AUDIO", "INT")
RETURN_NAMES = ("🎙️out_audio", "sample_rate")
FUNCTION = "resample_audio"
CATEGORY = "🎙️Jags_Audio/Manipulation"
def resample_audio(self, audio, sample_rate, sample_rate_target):
tensor = tensor.cpu().numpy()
#convert GPU tensor to CPU tensor for numpy else use a alternative method tensor.cuda().numpy ()
y = tensor.cpu().numpy()
y = librosa.resample(y, sample_rate, sample_rate_target)
tensor_out = torch.from_numpy(y).to(device=tensor.device)
return tensor_out, sample_rate_target
# --------
# ENVELOPE
# --------
NODE_CLASS_MAPPINGS = {
'JoinAudio': JoinAudio,
'BatchJoinAudio': BatchJoinAudio,
'CutAudio': CutAudio,
'DuplicateAudio': DuplicateAudio,
'StretchAudio': StretchAudio,
'ReverseAudio': ReverseAudio,
'ResampleAudio': ResampleAudio
}
NODE_DISPLAY_NAME_MAPPINGS = {
'JoinAudio': 'Jags_JoinAudio',
'BatchJoinAudio': 'Jags_BatchJoinAudio',
'CutAudio': 'Jags_CutAudio',
'DuplicateAudio': 'Jags_DuplicateAudio',
'StretchAudio': 'Jags_StretchAudio',
'ReverseAudio': 'Jags_ReverseAudio',
'ResampleAudio': 'Jags_ResampleAudio'
}