Skip to content

Latest commit

 

History

History
156 lines (125 loc) · 6.82 KB

wsl2.md

File metadata and controls

156 lines (125 loc) · 6.82 KB
title description tagline button_text button_link layout
RAPIDS + WSL 2
Use RAPIDS on Windows with WSL 2
The power of RAPIDS, now available for Windows
Install Now
#install
default

![RAPIDS WSL 2]({{ site.baseurl }}{% link /assets/images/csp+hpo.png %}){: .projects-logo}

Use RAPIDS
on Windows

{: .section-title-full}

{% capture intro_content %}

Windows users can now tap into GPU accelerated data science on their local machines using RAPIDS on Windows Subsystem for Linux 2 (WSL 2)! WSL 2 is a Windows feature that enables users to run native Linux command-line tools directly on Windows. Using this feature does not require a dual boot environment, removing complexity and saving you time. An NVIDIA GPU with Compute Capability{: target="_blank"} 7.0 or higher is required. {: .subtitle}

{% endcapture %}

{% include section-single.html background="background-white" padding-top="3em" padding-bottom="5em" content-single=intro_content %}

{% capture start_single %} # Before Installing {: .section-title-full .text-white} {% endcapture %}

{% capture start_left %}

Prerequisites

OS: Windows 11.

WSL Version: WSL 2. WSL 1 is not supported.

GPU: Only GPUs with Compute Capability{: target="_blank"} 7.0 or higher are supported on RAPIDS in WSL 2. 16GB or more of GPU RAM is recommended.

WSL 2 Instance: Ubuntu 20.04 instance for WSL 2.

Connect

Join our community conversations about RAPIDS on WSL 2 using Twitter{: target="_blank"}, [Slack]({{ site.slack_invite }}){: target="_blank"}, or ask a question on StackOverflow{: target="_blank"}.

{% endcapture %}

{% capture start_right %}

Limitations

Only single GPU is supported.

GPU Direct Storage is not supported.

At least 8 GB of RAM and a relatively fast CPU are strongly recommended.

Troubleshooting

When installing with conda, if an http 000 connection error occurs when accessing the repository data, run wsl --shutdown and then restart the WSL instance. More information

{% endcapture %}

{% include slopecap.html background="background-purple" position="top" slope="down" %} {% include section-single.html background="background-purple" padding-top="2em" padding-bottom="0em" content-single=start_single %} {% include section-halfs.html background="background-purple" padding-top="0em" padding-bottom="10em" content-left-half=start_left content-right-half=start_right %}

{% capture yd_header %} # Installation Instructions {: .section-title-full}

{% endcapture %}

{% capture yd_left %}

Conda
(Preferred Method)

  1. Install WSL 2 and the Ubuntu 20.04 package using Microsoft's instructions{: target="_blank"}.
  2. Install the latest NVIDIA Drivers{: target="_blank"} on the Windows host.
  3. Log in to the WSL 2 Linux instance.
  4. Install Conda in the WSL 2 Linux Instance using our Conda instructions{: target="_blank"}.
  5. Install RAPIDS via Conda, using the RAPIDS Release Selector tool{: target="_blank"}.
  6. Run this code to check that the RAPIDS installation is working:
    import cudf
    print(cudf.Series([1, 2, 3]))
    
  7. Install additional GitHub repositories and enablements from the Learn More section{: target="_blank"}.

{% endcapture %} {% capture yd_mid %}

pip

  1. Install WSL 2 and the Ubuntu 20.04 package using Microsoft's instructions{: target="_blank"}.
  2. Install the latest NVIDIA Drivers{: target="_blank"} on the Windows host.
  3. Log in to the WSL 2 Linux instance.
  4. Follow this guide to install the CUDA Toolkit without drivers{: target="_blank"} into the WSL 2 instance.
  5. Install RAPIDS pip packages on the WSL 2 Linux Instance using the pip instructions{: target="_blank"}.
  6. Run this code to check that the RAPIDS installation is working:
    import cudf
    print(cudf.Series([1, 2, 3]))
    
  7. Install additional GitHub repos, enablements, and 3rd party tools from the Learn More section{: target="_blank"}.

{% endcapture %} {% capture yd_right %}

Docker Desktop

  1. Install WSL 2 and the Ubuntu 20.04 package using Microsoft's instructions{: target="_blank"}.
  2. Install the latest NVIDIA Drivers{: target="_blank"} on the Windows host.
  3. Install latest Docker Desktop for Windows according to your applicable licensing terms{: target="_blank"}.
  4. Log in to the WSL 2 Linux instance.
  5. Generate and run the RAPIDS docker pull and docker run commands based on your desired configuration using the RAPIDS Release Selector{: target="_blank"}.
  6. Inside the Docker instance, run this code to check that the RAPIDS installation is working:
    import cudf
    print(cudf.Series([1, 2, 3]))
    
  7. Install additional GitHub repos, enablements, and 3rd party tools from the Learn More section{: target="_blank"}.

{% endcapture %} {% include slopecap.html background="background-white" position="top" slope="up" %} {% include section-single.html background="background-white" padding-top="2em" padding-bottom="0em" content-single=yd_header %} {% include section-thirds.html background="background-white" padding-top="0em" padding-bottom="10em" content-left-third=yd_left content-middle-third=yd_mid content-right-third=yd_right %} {% include cta-footer-help.html background="background-darkpurple" %}