You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The Mooses project is intended to provide a repository of resources for multiobjective optimization with mateheuristics. It currently contains reference Pareto fronts for benchmark problems and weight vectors taken from the jMetal framework (https://github.com/jMetal/jMetal). We provide the files in TXT and CSF formats.
Weight vector files
The name of the vector files follow the scheme WxD_y.dat, where x represents the number of dimensions or objectives and y is the number of vectors.
Objectives
Number of vectors
2
300, 400, 500, 600, 800, 1000
3
91, 300, 500, 600, 800
5
210, 495, 1000, 1200, 1500, 1800, 2000, 2500
8
156
10
220, 275
15
120, 135
Reference Pareto fronts
Problem family: ZDT [1]
Objectives (points)
ZDT1
2 (1001)
ZDT2
2 (1000)
ZDT3
2 (1000)
ZDT4
2 (1000)
ZDT6
2 (1000)
Problem family: DTLZ [2]
Objectives (points)
DTLZ1
2 (1000), 3 (9901), 4 (183), 6 (264), 8 (370)
DTLZ2
2 (1000), 3 (10000), 4 (216), 6 (254), 8 (380)
DTLZ3
2 (1000), 3 (4000), 4 (216), 6 (254), 8 (380)
DTLZ4
2 (1000), 3 (4000), 4 (216), 6 (254), 8 (380)
DTLZ5
2 (200), 3 (333)
DTLZ6
2 (200), 3 (140)
DTLZ7
2 (101), 3 (676), 4 (214), 6 (203), 8 (354)
Problem family: WFG [3]
Objectives (points)
WFG1
2 (1113), 3 (2000)
WFG2
2 (119), 3 (2801)
WFG3
2 (796), 3 (100)
WFG4
2 (1326), 3 (9898)
WFG5
2 (837), 3 (9901)
WFG6
2 (426), 3 (9901)
WFG7
2 (2494), 3 (9716)
WFG8
2 (527), 3 (10009)
WFG9
2 (2600), 3 (10201)
Problem family: MaF [4]
Objectives (points)
MaF01
5 (8855), 10 (7007), 15 (6120)
MaF02
5 (190), 10 (7007), 15 (6210)
MaF03
5 (8855), 10 (7007), 15 (6120)
MaF04
5 (8855), 10 (7007), 15 (6120)
MaF05
5 (8855), 10 (7007), 15 (6120)
MaF06
5 (100000), 10 (10000), 15 (10000)
MaF07
5 (100000), 10 (19663), 15 (16384)
MaF08
5 (5826), 10 (7188), 15 (7462)
MaF09
5 (5826), 10 (7188), 15 (7462)
References
[1] Zitzler, E., Deb, K., and Thiele, L. (2000). Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8(2). June 2000. DOI: https://dl.acm.org/doi/10.1162/106365600568202
[2] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Test Problems for Evolutionary Multi-Objective Optimization. In Abraham A., Jain L., Goldberg R. (eds) Evolutionary Multiobjective Optimization. Advanced Information and Knowledge Processing. Springer, London. 2005. DOI: https://doi.org/10.1007/1-84628-137-7_6
[3] Simon Huband, Phil Hingston, Luigi Barone, and Lyndon While. A Review of Multi-objective Test Problems and a Scalable Test Problem Toolkit. IEEE Transactions on Evolutionary Computation, volume 10, no 5, pages 477-506. IEEE, October 2006. DOI: https://doi.org/10.1109/TEVC.2005.861417
[4] Ran Cheng, Miqing Li, Ye Tian, Xingyi Zhang, Shengxiang Yang, Yaochu Jin and Xin Yao " Benchmark Functions for the CEC'2018 Competition on Many-Objective Optimization", Technical Report, University of Birmingham, United Kingdom, 2018.