-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodule.py
53 lines (46 loc) · 2.29 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
from torch import nn
class DPROMModule(nn.Module):
def __init__(self, num_classes, seqs_length=300, num_channels=32, num_hidden=128, dropout=0.5):
super(DPROMModule, self).__init__()
c1_kernel = 27
p_kernel = 6
self.c11 = nn.Sequential(nn.Conv1d(in_channels=4,
out_channels=num_channels, kernel_size=c1_kernel),
nn.ELU(),
nn.MaxPool1d(p_kernel),
nn.Dropout(dropout))
c11_out = self.out_size(seqs_length, c1_kernel, p_kernel)
c2_kernel = 14
self.c12 = nn.Sequential(nn.Conv1d(in_channels=4,
out_channels=num_channels, kernel_size=c2_kernel),
nn.ELU(),
nn.MaxPool1d(p_kernel),
nn.Dropout(dropout))
c12_out = self.out_size(seqs_length, c2_kernel, p_kernel)
c3_kernel = 7
self.c13 = nn.Sequential(nn.Conv1d(in_channels=4,
out_channels=num_channels, kernel_size=c3_kernel),
nn.ELU(),
nn.MaxPool1d(p_kernel),
nn.Dropout(dropout))
c13_out = self.out_size(seqs_length, c3_kernel, p_kernel)
concat_size = c11_out + c12_out + c13_out
self.bilstm = nn.LSTM(
num_channels, 32, 2, bias=True,
batch_first=True, dropout=dropout, bidirectional=True)
self.fc1 = nn.Sequential(nn.Linear(64 * concat_size, num_hidden),
nn.ELU(),
nn.Dropout(dropout))
self.fc2 = nn.Linear(num_hidden, num_classes)
def forward(self, x):
features = torch.cat((self.c11(x), self.c12(x), self.c13(x)), dim=2)
rnn, _ = self.bilstm(features.transpose(1, 2))
hidden = self.fc1(torch.flatten(rnn, 1))
out = self.fc2(hidden).squeeze(dim=-1)
return out
@staticmethod
def out_size(seqs_length, conv_kernel, pool_kernel):
conv_shape = seqs_length - conv_kernel + 1
pool_shape = ((conv_shape - 1* (pool_kernel - 1) - 1) // pool_kernel) + 1
return pool_shape