-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpct_convdata.py
76 lines (72 loc) · 3.59 KB
/
pct_convdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Copyright (c) 2013, Li Sijin ([email protected])
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# - Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# - Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from ibasic_convdata import *
##
import dhmlpe
import dhmlpe_pct
import indicatormap
###
class PCTDataProviderError(Exception):
pass
class PCTDataProvider(CroppedMemoryMetaDataProvider):
"""
This data provider will provide
[data, pct(real), detection map]
"""
def __init__(self, data_dir, image_range, init_epoch=1, init_batchnum=None, dp_params={}, test=False):
CroppedMemoryMetaDataProvider.__init__(self, data_dir, image_range, init_epoch, init_batchnum, dp_params, test)
self.detection_ind_dim = self.batch_meta['detection_ind_dim']
self.maximum_count = self.batch_meta['maximum_count']
def read_all_data(self):
"""
Read all necessary data into class object
"""
self.data = self.batch_meta['data']
self.detection_ind = self.batch_meta['detection_ind']
self.pct = self.batch_meta['real_cnt'] / self.batch_meta['maximum_count']
def get_next_batch(self):
"""
Prepare data batch for cuda core
alldata will be a list of data
self.data_dic['cur_batch_indexes'] specify the index of data for this batch
"""
epoch, batchnum, alldata = CroppedMemoryMetaDataProvider.get_next_batch(self)
self.data_dic['pct'] = self.pct[..., self.data_dic['cur_batch_indexes']]
self.data_dic['detection_ind'] = self.detection_ind[...,self.data_dic['cur_batch_indexes']]
# print self.data_dic['data'].shape, self.data_dic['data'].dtype
# if np.any(np.isnan(self.data_dic['data'])):
# print 'I found non in data_dic'
# print self.data_dic['pct'].shape, self.data_dic['pct'].dtype
# print self.data_dic['detection_ind'].shape, self.data_dic['detection_ind'].dtype
ndata = len(self.data_dic['cur_batch_indexes'])
alldata += [np.require(self.data_dic['pct'].reshape((-1,ndata), order='F'), dtype=np.single, requirements='C')]
alldata += [np.require(self.data_dic['detection_ind'].reshape((-1,ndata),order='F'), dtype=np.single, requirements='C')]
return epoch, batchnum, alldata
def get_data_dims(self, idx=0):
if idx==0:
return np.prod(self.input_image_dim)
elif idx == 1:
return 1
else:
return np.prod(self.detection_ind_dim)