-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnoah_convdata.py
68 lines (62 loc) · 3.31 KB
/
noah_convdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright (c) 2013, Li Sijin ([email protected])
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# - Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# - Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from ibasic_convdata import *
class NoahDataProviderError(Exception):
pass
class CroppedImageNetDataProvider(CroppedImageDataProvider):
"""
"""
def __init__(self, data_dir, image_range, init_epoch=1, init_batchnum=None, dp_params={}, test=False):
CroppedImageDataProvider.__init__(self, data_dir, image_range, init_epoch, init_batchnum, dp_params, test)
self.labels = self.batch_meta['labels'] #
self.labelnames = self.batch_meta['labelnames'] #
self.labelwords = self.batch_meta['labelwords'] #
self.test = test
## Add alias name ( Since it will be called by cost function)
self.batch_meta['label_names'] = self.batch_meta['labelnames'] #
# override images_path
self.images_path = map(lambda x:iu.fullfile(data_dir,x), \
map(lambda x:iu.getpath(x, 1),\
self.batch_meta['images_path']))
self.num_classes = 1000
def get_next_batch(self):
if self.data_dic is None or len(self.batch_range) > 1:
self.data_dic = self.get_batch(self.curr_batchnum)
epoch, batchnum = self.curr_epoch, self.curr_batchnum
self.advance_batch()
ndata = self.data_dic['data'].shape[-1]
alldata = [np.require(self.data_dic['data'].reshape((-1,ndata),order='F'),dtype=np.single, requirements='C'), \
np.require(np.asarray(self.data_dic['labels']).reshape((1,ndata)), dtype=np.single, requirements='C')]
return epoch, batchnum, alldata
# _joint_batches use the parant class's method
def get_batch(self, batch_num):
"""
batch_num in self.image_range
"""
dic = CroppedImageDataProvider.get_batch(self, batch_num)
labels = map(lambda x:self.labels[0, x], dic['cur_batch_indexes'])
dic['labels'] = labels;
return dic
def get_data_dims(self, idx=0):
return iprod(self.input_image_dim) if idx==0 else 1