-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquantum.lyx
563 lines (434 loc) · 11.6 KB
/
quantum.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\tht}{\vartheta}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ph}{\varphi}
\end_inset
\begin_inset FormulaMacro
\newcommand{\balpha}{\boldsymbol{\alpha}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\btheta}{\boldsymbol{\theta}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bJ}{\boldsymbol{J}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bGamma}{\boldsymbol{\Gamma}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bOmega}{\boldsymbol{\Omega}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\d}{\text{d}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\t}[1]{\text{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\m}{\text{m}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\v}[1]{\boldsymbol{#1}}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\renewcommand{\t}[1]{\mathbf{#1}}
\end_inset
\end_layout
\begin_layout Standard
Imagine a free non-relativistic particle in 1D space.
To obtain its velocity one must observe it in at least two positions
\begin_inset Formula $x_{0}$
\end_inset
and
\begin_inset Formula $x_{1}$
\end_inset
.
One then deduces the velocity
\begin_inset Formula
\begin{equation}
v=\frac{x_{1}-x_{0}}{t_{1}-t_{0}}.
\end{equation}
\end_inset
In quantum mechanics, we have
\begin_inset Formula $|\psi(t)>$
\end_inset
as a state, parametrized by time
\begin_inset Formula $t$
\end_inset
.
We can project to position space to obtain
\begin_inset Formula
\begin{equation}
\psi(x_{i},t)=<x_{i}|\psi(t)>.
\end{equation}
\end_inset
This means that we would like to know the coefficient in the expansion
\begin_inset Formula
\begin{equation}
|\psi(t)>=\sum_{i}|x_{i}>\psi(x_{i},t)=\sum_{i}|x_{i}><x_{i}|\psi(t)>.
\end{equation}
\end_inset
We can measure the position by applying
\begin_inset Formula $\hat{Q}$
\end_inset
with the Eigenvalue property
\begin_inset Formula
\begin{equation}
\hat{Q}|x_{i}>=x_{i}|x_{i}>.
\end{equation}
\end_inset
This means that in spectral expansion
\begin_inset Formula
\begin{equation}
\hat{Q}=\sum_{i}x_{i}|x_{i}><x_{i}|.
\end{equation}
\end_inset
The momentum space consists basis vectors
\begin_inset Formula $|p_{n}>=\hbar|k_{n}>$
\end_inset
with
\begin_inset Formula
\begin{equation}
<x_{j}|p_{n}>=\frac{\hbar}{\sqrt{N}}e^{ip_{n}x_{j}/\hbar}
\end{equation}
\end_inset
where only
\begin_inset Formula $N$
\end_inset
\begin_inset Formula
\[
p_{n}=n\frac{2\pi\hbar}{Na}
\]
\end_inset
where
\begin_inset Formula $a$
\end_inset
is the distance between two sites.
\end_layout
\begin_layout Standard
A subclass of canonical transformations - namely linear ones - can be represente
d as unitary transformations, yielding the time evolution in a quantum system.
\end_layout
\begin_layout Subsection*
Hamilton-Jacobi equation and Schrödinger equation
\end_layout
\begin_layout Subsubsection*
Usual analogy
\end_layout
\begin_layout Standard
See also https://www.reed.edu/physics/faculty/wheeler/documents/Quantum%20Mechanic
s/Miscellaneous%20Essays/Schr%C3%B6dinger's%20Argument.pdf
\end_layout
\begin_layout Standard
The idea of the Hamilton-Jacobi formalism consists in finding a canonical
transformation
\begin_inset Formula
\begin{align}
\v p & =\nabla_{\v q}S\\
\v Q & =\nabla_{\v P}S
\end{align}
\end_inset
with generating function or action
\begin_inset Formula $S$
\end_inset
under which the transformed Hamiltonian becomes zero.
In usual phase-space the Hamilton-Jacobi equation is
\begin_inset Formula
\begin{equation}
H(\v q,\nabla_{\v q}S,t)+\frac{\partial S(\v q,\v P,t)}{\partial t}=0.
\end{equation}
\end_inset
Schrödinger interpreted
\begin_inset Formula $S$
\end_inset
as the phase of a wave given by
\begin_inset Formula
\[
\psi=e^{iS/\hbar}.
\]
\end_inset
Then
\begin_inset Formula
\begin{align*}
S & =-i\hbar\log\frac{\psi}{\psi_{0}}\\
\frac{\partial S}{\partial t} & =-\frac{i\hbar}{\psi}\frac{\partial\psi}{\partial t}\\
\nabla_{\v q}S & =-\frac{i\hbar}{\psi}\nabla_{\v q}\psi
\end{align*}
\end_inset
Now
\begin_inset Formula
\[
-\frac{\hbar^{2}}{2m}\nabla_{\v q}^{\,2}\psi=(\frac{1}{2m}\nabla_{\v q}S\cdot\nabla_{\v q}S-i\frac{\hbar}{2m}\nabla_{\v q}^{\,2}S)\psi
\]
\end_inset
or
\begin_inset Formula
\[
\frac{1}{2m}\nabla_{\v q}S\cdot\nabla_{\v q}S=\frac{1}{\psi}\frac{\hbar^{2}}{2m}\left(-\nabla_{\v q}^{\,2}\psi+\nabla_{\v q}^{\,2}\log\frac{\psi}{\psi_{0}}\right)
\]
\end_inset
If we take
\begin_inset Formula
\[
H=\frac{\v p^{2}}{2m}+V(\v q,t)
\]
\end_inset
we obtain
\begin_inset Formula
\begin{equation}
\frac{1}{\psi}\frac{\hbar^{2}}{2m}\left(-\nabla_{\v q}^{\,2}\psi+\nabla_{\v q}^{\,2}\log\frac{\psi}{\psi_{0}}\right)+V-\frac{i\hbar}{\psi}\frac{\partial\psi}{\partial t}=0.
\end{equation}
\end_inset
Or
\begin_inset Formula
\begin{equation}
i\hbar\frac{\partial\psi}{\partial t}=-\frac{\hbar^{2}}{2m}\left(\nabla_{\v q}^{\,2}\psi+\nabla_{\v q}^{\,2}\log\frac{\psi}{\psi_{0}}\right)+V\psi.
\end{equation}
\end_inset
If we drop the second term we obtain the Schrödinger equation
\begin_inset Formula
\begin{equation}
i\hbar\frac{\partial\psi}{\partial t}=-\frac{\hbar^{2}}{2m}\nabla_{\v q}^{\,2}\psi+V\psi.
\end{equation}
\end_inset
Going the other way round, starting from the Schröding equation, we obtain
the Hamilton-Jacobi equation up to a term of order
\begin_inset Formula $\hbar^{2}$
\end_inset
, which is dropped in the classical limit.
\end_layout
\begin_layout Subsubsection*
Extended phase space
\end_layout
\begin_layout Standard
We now introduce extended phase space according to
\begin_inset CommandInset citation
LatexCommand cite
key "key-1"
literal "false"
\end_inset
with orbit parameter
\begin_inset Formula $s$
\end_inset
, canonical variables
\begin_inset Formula
\begin{align}
\v q_{e} & \equiv(\v q,t),\\
\v p_{e} & \equiv(\v p,-e).
\end{align}
\end_inset
and Hamiltonian
\begin_inset Formula
\begin{equation}
H_{e}(\v q_{e},\v p_{e},s)=k(s)(H(\v q,\v p,t)-e).
\end{equation}
\end_inset
Here
\begin_inset Formula $k=\d t(s)/\d s$
\end_inset
is a scaling factor and
\begin_inset Formula $H_{e}$
\end_inset
vanishes on the actual trajectory where
\begin_inset Formula $e=H$
\end_inset
.
Canonical equations of motion are
\begin_inset Formula
\begin{align}
\frac{\d\v q}{\d s} & =\nabla_{\v p}H_{e}=k\nabla_{\v p}H=\frac{\d t}{\d s}\frac{\d\v q}{\d t},\\
\frac{\d\v p}{\d s} & =-\nabla_{\v q}H_{e}=-k\nabla_{\v q}H=\frac{\d t}{\d s}\frac{\d\v p}{\d t},\\
\frac{\d t}{\d s} & =-\partial_{e}H_{e}=k(s)=\frac{\d t}{\d s},\\
\frac{\d\mathcal{H}}{\d s} & =\partial_{t}H_{e}=k(s)\partial_{t}H=\frac{\d t}{\d s}\frac{\d H}{\d t}.
\end{align}
\end_inset
To make a non-autonomous system autonomous, of course one would like to
set
\begin_inset Formula $s=kt$
\end_inset
with constant
\begin_inset Formula $k$
\end_inset
in order to make dependencies on
\begin_inset Formula $s$
\end_inset
disappear.
To account for dynamical time in a coordinate time
\begin_inset Formula $s$
\end_inset
as required by general relativity, we have to keep the relation arbitrary.
\end_layout
\begin_layout Standard
Now we would like to find a canonical transformation in extended phase-space
that makes
\begin_inset Formula $H_{1}$
\end_inset
vanish not only along the trajectory, but globally.
This means that we use a generating function
\begin_inset Formula $S_{e}=S_{e}(\v q,t,\v P,E,s)$
\end_inset
such that
\begin_inset Formula
\begin{align}
\v p & =\nabla_{\v q}S_{e},\\
e & =-\partial_{t}S_{e},\\
\v Q & =\nabla_{\v P}S_{e},\\
T & =-\partial_{E}S_{e}.
\end{align}
\end_inset
Thus we want
\begin_inset Formula
\begin{equation}
H_{e}(\v q,t,\nabla_{\v q}S_{e},-\partial_{t}S_{e},s)+\partial_{s}S_{e}=0.
\end{equation}
\end_inset
Explicitly
\begin_inset Formula
\begin{equation}
k(s)(H(\v q,t,\nabla_{\v q}S_{e},t)+\partial_{t}S_{e})+\partial_{s}S_{e}=0.
\end{equation}
\end_inset
We would now like to construct an extended Schrödinger equation in analogy
the usual derivation with
\begin_inset Formula $S_{e}$
\end_inset
describing wave-fronts.
By the same construction as above we obtain
\begin_inset Formula
\begin{align*}
S_{e} & =-i\hbar\log\frac{\psi_{e}}{\psi_{0}}\\
\frac{\partial S_{e}}{\partial t} & =-\frac{i\hbar}{\psi_{e}}\frac{\partial\psi_{e}}{\partial t}\\
\nabla_{\v q}S_{e} & =-\frac{i\hbar}{\psi_{e}}\nabla_{\v q}\psi_{e}\\
\frac{\partial S_{e}}{\partial s} & =-\frac{i\hbar}{\psi_{e}}\frac{\partial\psi_{e}}{\partial s}
\end{align*}
\end_inset
\begin_inset Formula
\[
\frac{1}{2m}\nabla_{\v q}S_{e}\cdot\nabla_{\v q}S_{e}=\frac{1}{\psi_{1}}\frac{\hbar^{2}}{2m}\left(-\nabla_{\v q}^{\,2}\psi_{e}+\nabla_{\v q}^{\,2}\log\frac{\psi_{e}}{\psi_{e0}}\right)
\]
\end_inset
\begin_inset Formula
\[
\]
\end_inset
\begin_inset Formula
\begin{equation}
k(s)\left(\frac{1}{\psi_{e}}\frac{\hbar^{2}}{2m}\left(-\nabla_{\v q}^{\,2}\psi_{e}+\nabla_{\v q}^{\,2}\log\frac{\psi_{e}}{\psi_{e0}}\right)+V-\frac{i\hbar}{\psi_{e}}\frac{\partial\psi_{e}}{\partial t}\right)-\frac{i\hbar}{\psi_{e}}\frac{\partial\psi_{e}}{\partial s}=0.
\end{equation}
\end_inset
By analogy we obtain
\begin_inset Formula
\begin{equation}
i\hbar\left(\frac{\partial\psi_{e}}{\partial t}+\frac{1}{k(s)}\frac{\partial\psi_{e}}{\partial s}\right)=-\frac{\hbar^{2}}{2m}\nabla_{\v q}^{\,2}\psi_{e}+V\psi_{e}.
\end{equation}
\end_inset
\end_layout
\begin_layout Subsection*
Quantum mechanics in extended phase space
\end_layout
\begin_layout Bibliography
\begin_inset CommandInset bibitem
LatexCommand bibitem
key "key-1"
\end_inset
Struckmeier, Jürgen.
Hamiltonian dynamics on the symplectic extended phase space for autonomous
and non-autonomous systems.
Journal of Physics A: Mathematical and General, 2005, 38.
Jg., Nr.
6, S.
1257.
\end_layout
\begin_layout Bibliography
\begin_inset CommandInset bibitem
LatexCommand bibitem
key "key-1"
\end_inset
Struckmeier, Jürgen: Extended Hamilton--Lagrange formalism and its application
to Feynman's path integral for relativistic quantum physics.
In: International Journal of Modern Physics E, 18 (2009), Nr.
01, S.
79--108
\end_layout
\end_body
\end_document