forked from MLSpeech/DeepFormants
-
Notifications
You must be signed in to change notification settings - Fork 0
/
load_tracking_model.lua
44 lines (41 loc) · 1.17 KB
/
load_tracking_model.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
require 'torch' -- torch
require 'optim'
require 'rnn' -- provides a normalization operator
function string:split(sep)
local sep, fields = sep, {}
local pattern = string.format("([^%s]+)", sep)
self:gsub(pattern, function(substr) fields[#fields + 1] = substr end)
return fields
end
local f_file = io.open(arg[1], 'r')
local p_file = io.open(arg[2], 'w')
local i = 0
for line in f_file:lines('*l') do
i = i + 1
end
local data = torch.Tensor(i, 351)
i = 0
local names = {}
local line_counter = 0
local f_file = io.open(arg[1], 'r')
for line in f_file:lines('*l') do
i = i+1
line_counter = line_counter+1
local l = line:split(',')
first = true
for key, val in ipairs(l) do
if first == false then
data[i][key] = val
else data[i][key] = line_counter
names[i] = val
first = false
end
end
end
local X = data[{{},{2,-1}}]
model = torch.load('tracking_model.dat')
local myPrediction = model:forward(X)
p_file:write('NAME,F1,F2,F3,F4\n')
for p=1, (#myPrediction)[1] do
p_file:write(names[p]..','..tostring(1000*myPrediction[p][1])..','..tostring(1000*myPrediction[p][2])..','..tostring(1000*myPrediction[p][3])..','..tostring(1000*myPrediction[p][4])..'\n')
end