-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfigure_privacy_quantities.py
53 lines (44 loc) · 1.53 KB
/
figure_privacy_quantities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
import pandas as pd
from private_projection import get_sigma
from tqdm import tqdm
if __name__ == "__main__":
delta = 1e-6
p = np.arange(0.25, 1.01, 0.25)
eps = np.arange(1, 15.1, 3)
n = [5, 10, 15, 20]
sensitivity = np.sqrt(2) # TODO: check if random projection or identity at the end.
res = []
for p_ in tqdm(p):
for eps_ in eps:
for n_ in n:
p_ = np.around(p_, 2)
sigma = get_sigma(delta, p_, eps_, n_, sensitivity) #/ np.sqrt(p_ * n_)
res.append({
"p": p_,
"n": n_,
"eps": eps_,
"sigma": sigma
})
pd.DataFrame(res).reset_index(drop=True).to_csv("figures/privacy_all.csv",index=False)
res = []
for eps_ in tqdm(eps):
c = {
"eps": eps_
}
for n_ in n:
sigma = get_sigma(delta, 1.0, eps_, n_, sensitivity) / np.sqrt(n_)
c[f"sigma_n{n_}"] = sigma
res.append(c)
pd.DataFrame(res).reset_index(drop=True).to_csv("figures/privacy_eps_vs_sigma_by_n.csv",index=False)
res = []
for eps_ in tqdm(eps):
c = {
"eps": eps_
}
for p_ in p:
p_ = np.around(p_, 2)
sigma = get_sigma(delta, p_, eps_, 20, sensitivity) #/ np.sqrt(p_ * 20)
c[f"sigma_p{p_}"] = sigma
res.append(c)
pd.DataFrame(res).reset_index(drop=True).to_csv("figures/privacy_eps_vs_sigma_by_p.csv",index=False)