From d4342a217d9d743bca97a3bfb254423bc6680c53 Mon Sep 17 00:00:00 2001 From: aldo Date: Fri, 21 Jun 2024 15:39:56 -0400 Subject: [PATCH] async add print logic as well --- src/instructlab/training/async_logger.py | 1 + src/instructlab/training/main_ds.py | 46 ++++++++++++------------ 2 files changed, 24 insertions(+), 23 deletions(-) diff --git a/src/instructlab/training/async_logger.py b/src/instructlab/training/async_logger.py index 752b7a9c..96fc3067 100644 --- a/src/instructlab/training/async_logger.py +++ b/src/instructlab/training/async_logger.py @@ -37,6 +37,7 @@ async def log(self, data): data['timestamp'] = datetime.now().isoformat() self.logs.append(data) await self._write_logs_to_file(data) + {{ print(f"\033[92m{json.dumps(data, indent=4)}\033[0m") }} async def _write_logs_to_file(self, data): '''appends to the log instead of writing the whole log each time''' diff --git a/src/instructlab/training/main_ds.py b/src/instructlab/training/main_ds.py index b1815c5a..50148476 100644 --- a/src/instructlab/training/main_ds.py +++ b/src/instructlab/training/main_ds.py @@ -401,18 +401,18 @@ def train(args, model, tokenizer, train_loader, grad_accum, metric_logger): ) weight_norm = float(model.optimizer.single_partition_of_fp32_groups[0].norm()) - print( - f"throughput: {overall_throughput} " - f"samples/s, lr: {current_lr}, " - f"loss: {loss.item()} " - f"cuda_mem_allocated: {cuda_mem_allocated} GB " - f"cuda_malloc_retries: {cuda_malloc_retries} " - f"num_loss_counted_tokens: {num_loss_counted_tokens} " - f"batch_size: {aggregated_values[1]} " - f"total loss: {aggregated_values[2]/num_loss_counted_tokens} " - f"gradnorm: {global_grad_norm} " - f"weight_norm: {weight_norm}" - ) + # print( + # f"throughput: {overall_throughput} " + # f"samples/s, lr: {current_lr}, " + # f"loss: {loss.item()} " + # f"cuda_mem_allocated: {cuda_mem_allocated} GB " + # f"cuda_malloc_retries: {cuda_malloc_retries} " + # f"num_loss_counted_tokens: {num_loss_counted_tokens} " + # f"batch_size: {aggregated_values[1]} " + # f"total loss: {aggregated_values[2]/num_loss_counted_tokens} " + # f"gradnorm: {global_grad_norm} " + # f"weight_norm: {weight_norm}" + # ) metric_logger.log_sync( { "epoch": epoch, @@ -510,17 +510,17 @@ def main(args): ) if args.local_rank == 0: - print( - f"\033[96mnum_gpus: {torch.distributed.get_world_size()}\n" - f"avg_sample_len: {dataset.get_lengths().mean()}\n" - f"effective_batch_size: {args.effective_batch_size}\n" - f"max_batch_len_per_gpu: {args.max_batch_len}\n" - f"packing_max_batch_len: {packing_max_batch_len}\n" - f"grad_accum: {grad_accum}\n" - f"num batches: {len(train_loader)}\n" - f"avg_samples_per_batch: {len(dataset)/len(train_loader)}\n" - f"samples_per_gpu: {args.samples_per_gpu}\033[0m" - ) + # print( + # f"\033[96mnum_gpus: {torch.distributed.get_world_size()}\n" + # f"avg_sample_len: {dataset.get_lengths().mean()}\n" + # f"effective_batch_size: {args.effective_batch_size}\n" + # f"max_batch_len_per_gpu: {args.max_batch_len}\n" + # f"packing_max_batch_len: {packing_max_batch_len}\n" + # f"grad_accum: {grad_accum}\n" + # f"num batches: {len(train_loader)}\n" + # f"avg_samples_per_batch: {len(dataset)/len(train_loader)}\n" + # f"samples_per_gpu: {args.samples_per_gpu}\033[0m" + # ) metric_logger.log_sync({ 'num_gpus': torch.distributed.get_world_size(), 'avg_sample_len': dataset.get_lengths().mean(),