diff --git a/tests/functional/__init__.py b/tests/functional/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/tests/functional/test_granular_api.py b/tests/functional/test_granular_api.py new file mode 100644 index 00000000..ea58c0f6 --- /dev/null +++ b/tests/functional/test_granular_api.py @@ -0,0 +1,86 @@ +# SPDX-License-Identifier: Apache-2.0 + +# Standard +from datetime import datetime +from unittest.mock import MagicMock +import glob +import os +import pathlib + +# First Party +from instructlab.sdg import BlockRegistry +from instructlab.sdg.generate_data import ( + generate_taxonomy, + mix_datasets, + postprocess_taxonomy, + preprocess_taxonomy, +) + +# Third Party +import git + +# Local +from ..mockllmblock import MockLLMBlock + +def _clone_instructlab_taxonomy(taxonomy_dir): + taxonomy_repo_url = "https://github.com/instructlab/taxonomy" + taxonomy_commit = "dfa3afaf26f40f923cf758389719619ec9b1ddb1" + repo = git.Repo.clone_from(taxonomy_repo_url, taxonomy_dir, no_checkout=True) + repo.git.checkout(taxonomy_commit) + +def test_granular_api_end_to_end(testdata_path: pathlib.Path, tmp_path: pathlib.Path): + # Registry our mock block so we can reference it in pipelines + BlockRegistry.register("MockLLMBlock")(MockLLMBlock) + + # Clone a taxonomy and edit 1 file in it + taxonomy_dir = tmp_path.joinpath("taxonomy") + _clone_instructlab_taxonomy(taxonomy_dir) + changed_qna_yaml = taxonomy_dir.joinpath("knowledge", "science", "animals", "birds", "black_capped_chickadee", "qna.yaml") + with open(changed_qna_yaml, "a", encoding="utf-8") as file: + file.write("") + + pipeline_dir = testdata_path.joinpath("mock_pipelines") + date_suffix = datetime.now().replace(microsecond=0).isoformat().replace(":", "_") + + preprocessed_dir = tmp_path.joinpath("preprocessed") + preprocess_taxonomy( + taxonomy_dir=taxonomy_dir, + output_dir=preprocessed_dir, + ) + chickadee_docs = glob.glob( + str(preprocessed_dir.joinpath("documents", "knowledge_science_*", "chickadee.md")) + ) + assert chickadee_docs + chickadee_samples_path = preprocessed_dir.joinpath("knowledge_science_animals_birds_black_capped_chickadee.jsonl") + assert chickadee_samples_path.is_file() + + client = MagicMock() + client.server_supports_batched = False + generated_dir = tmp_path.joinpath("generated") + generate_taxonomy( + client=client, + input_dir=preprocessed_dir, + output_dir=generated_dir, + pipeline=pipeline_dir, + ) + generated_phoenix_samples_path = generated_dir.joinpath("knowledge_science_animals_birds_black_capped_chickadee.jsonl") + assert generated_phoenix_samples_path.is_file() + + postprocessed_dir = tmp_path.joinpath("postprocessed") + postprocess_taxonomy( + input_dir=generated_dir, + output_dir=postprocessed_dir, + date_suffix=date_suffix, + pipeline=pipeline_dir, + ) + knowledge_recipe_file = postprocessed_dir.joinpath(f"knowledge_recipe_{date_suffix}.yaml") + assert knowledge_recipe_file.is_file() + skills_recipe_file = postprocessed_dir.joinpath(f"skills_recipe_{date_suffix}.yaml") + assert skills_recipe_file.is_file() + + mixed_skills_output_file = f"{postprocessed_dir}/skills_train_msgs_{date_suffix}.jsonl" + mix_datasets( + recipe_file=f"{postprocessed_dir}/skills_recipe_{date_suffix}.yaml", + output_file=mixed_skills_output_file, + ) + assert pathlib.Path(mixed_skills_output_file).is_file() diff --git a/tests/mockllmblock.py b/tests/mockllmblock.py new file mode 100644 index 00000000..744cd6d5 --- /dev/null +++ b/tests/mockllmblock.py @@ -0,0 +1,55 @@ +# SPDX-License-Identifier: Apache-2.0 + +# Standard +import random +import string + +# Third Party +from datasets import Dataset + +# First Party +from instructlab.sdg import LLMBlock + + +def _random_string(size): + return "".join(random.choices(string.ascii_lowercase, k=size)) + + +def _add_mocked_cols(sample, block_name): + match block_name: + case "gen_questions" | "gen_grounded_questions": + sample["question"] = f"Is this a question {_random_string(8)}?" + case "eval_questions" | "eval_grounded_questions": + sample["evaluation"] = "This is an evaluation." + sample["score"] = "1" + case "gen_responses" | "gen_grounded_responses": + sample["response"] = "This is a response." + case "evaluate_qa_pair" | "evaluate_grounded_qa_pair": + sample["evaluation"] = "This is an evaluation." + sample["score"] = "2" + case "gen_contexts": + sample["context"] = f"This is a context {_random_string(8)}." + case "gen_spellcheck": + sample["spellcheck"] = sample["document"] + case "gen_knowledge": + sample["question"] = f"Is this a question {_random_string(8)}?" + sample["response"] = "This is a response." + case "eval_faithfulness_qa_pair": + sample["explanation"] = "This is an explanation." + sample["judgment"] = "YES" + case "eval_relevancy_qa_pair": + sample["feedback"] = "This is some feedback." + sample["score"] = "2" + case "eval_verify_question": + sample["explanation"] = "This is an explanation." + sample["rating"] = "1" + case _: + raise Exception( + f"Received an un-mocked LLMBlock: {block_name}. Add code in {__file__} to handle this block." + ) + return sample + + +class MockLLMBlock(LLMBlock): + def generate(self, samples: Dataset): + return samples.map(_add_mocked_cols, fn_kwargs={"block_name": self.block_name})