-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathjson_logger.py
115 lines (99 loc) · 4.02 KB
/
json_logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# python3
# Copyright 2022 InstaDeep Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import time
from typing import Dict, Optional
class JsonLogger:
"""Logger to create JSON files for reporting experiment results.
This logger follows the suggested marl-eval protocol and was adapted
from the implementation found in BenchMARL which can be viewed at:
https://tinyurl.com/2t6fy548
Args:
path (str): folder path for saving the `metrics.json` file.
algorithm_name (str): algorithm name e.g PPO.
task_name (str): task name e.g 3s5z (for SMAC).
environment_name (str): environment name e.g SMAC.
seed (int): random seed of the experiment.
"""
def __init__(
self,
path: str,
algorithm_name: str,
task_name: str,
environment_name: str,
seed: int,
):
"""Initialises the JsonLogger and creates a metrics file if it doesn't exist."""
self.file_path = f"{path}/metrics.json"
self.run_data: Dict = {"absolute_metrics": {}}
# If the file already exists, load it
if os.path.isfile(self.file_path):
with open(self.file_path) as f:
data = json.load(f)
else:
# Create the logging directory if it doesn't exist
os.makedirs(path, exist_ok=True)
data = {}
# Merge the existing data with the new data
self.data = data
if environment_name not in self.data:
self.data[environment_name] = {}
if task_name not in self.data[environment_name]:
self.data[environment_name][task_name] = {}
if algorithm_name not in self.data[environment_name][task_name]:
self.data[environment_name][task_name][algorithm_name] = {}
self.data[environment_name][task_name][algorithm_name][
f"seed_{seed}"
] = self.run_data
with open(self.file_path, "w") as f:
json.dump(self.data, f, indent=4)
def write(
self,
timestep: int,
key: str,
value: float,
evaluation_step: Optional[int] = None,
is_absolute_metric: bool = False,
) -> None:
"""Writes a step to the json reporting file.
Args:
timestep (int): the current environment timestep.
key (str): the name of the metric to be logged.
value (float): the value of the metric to be logged.
evaluation_step (int): the number of evaluations already run.
is_absolute_metric (bool): whether the metric being logged is
an absolute metric.
"""
current_time = time.time()
# This will ensure the first logged time is 0, which avoids taking compilation
# into account for jax-based systems when plotting downstream.
if evaluation_step == 0:
self.start_time = current_time
metrics: Dict = {key: [value]}
if is_absolute_metric:
self.run_data["absolute_metrics"].update(metrics)
else:
step_metrics = { # type: ignore
"step_count": timestep,
"elapsed_time": current_time - self.start_time,
} | metrics
step_str = f"step_{evaluation_step}"
if step_str in self.run_data:
self.run_data[step_str].update(step_metrics)
else:
self.run_data[step_str] = step_metrics
with open(self.file_path, "w") as f:
json.dump(self.data, f, indent=4)