forked from dcf21/astrolabe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrule.py
executable file
·225 lines (182 loc) · 7.9 KB
/
rule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#!/usr/bin/python3
# rule.py
# -*- coding: utf-8 -*-
#
# The python script in this file makes the various parts of a model astrolabe.
#
# Copyright (C) 2010-2022 Dominic Ford <[email protected]>
#
# This code is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 2 of the License, or (at your option) any later
# version.
#
# You should have received a copy of the GNU General Public License along with
# this file; if not, write to the Free Software Foundation, Inc., 51 Franklin
# Street, Fifth Floor, Boston, MA 02110-1301, USA
# ----------------------------------------------------------------------------
"""
Render the rule and the alidade of the astrolabe.
"""
from math import sin, tan
from constants import unit_deg, unit_cm, unit_mm, inclination_ecliptic, centre_scaling, r_1, d_12
from graphics_context import BaseComponent
from settings import fetch_command_line_arguments
from themes import themes
class Rule(BaseComponent):
"""
Render the rule and the alidade of the astrolabe.
"""
def default_filename(self):
"""
Return the default filename to use when saving this component.
"""
return "rule"
def bounding_box(self, settings):
"""
Return the bounding box of the canvas area used by this component.
:param settings:
A dictionary of settings required by the renderer.
:return:
Dictionary with the elements 'x_min', 'x_max', 'y_min' and 'y_max' set
"""
return {
'x_min': -2 * unit_cm,
'x_max': 4 * unit_cm,
'y_min': -r_1 * 1.2,
'y_max': r_1 * 1.2
}
def do_rendering(self, settings, context):
"""
This method is required to actually render this item.
:param settings:
A dictionary of settings required by the renderer.
:param context:
A GraphicsContext object to use for drawing
:return:
None
"""
is_southern = settings['latitude'] < 0
theme = themes[settings['theme']]
context.set_color(color=theme['lines'])
margin = 2 * unit_cm
# Define the radii of all the concentric circles to be drawn on front of mother
# Outer radius of rete
r_2 = r_1 - d_12 * 3 - unit_mm
# Radius of central hole
r_3 = d_12 * centre_scaling
# Radius of equator
r_4 = r_2 * tan((90 - inclination_ecliptic) / 2 * unit_deg)
# Width of alidade
r_6 = 0.8 * unit_cm
# Outer radius of shadow scale
r_12 = r_1 - d_12 * 10
# Subroutine to draw outlines of rule and the alidade
def rule_draw(context, xpos, ypos, sight):
# Draw central hole
context.begin_path()
context.circle(centre_x=xpos, centre_y=ypos, radius=r_3)
context.stroke()
# Draw curved bits in centre
context.begin_path()
context.arc(centre_x=xpos, centre_y=ypos, radius=r_6, arc_from=-90 * unit_deg, arc_to=0)
context.stroke()
context.begin_path()
context.arc(centre_x=xpos, centre_y=ypos, radius=r_6, arc_from=90 * unit_deg, arc_to=180 * unit_deg)
context.stroke()
# Now draw the straight edges of the ruler
context.begin_path()
context.move_to(x=xpos, y=ypos + r_6)
context.line_to(x=xpos, y=ypos + (r_2 + margin) + r_6)
context.line_to(x=xpos + r_6, y=ypos + (r_2 + margin))
context.line_to(x=xpos + r_6, y=ypos)
context.move_to(x=xpos, y=ypos - r_6)
context.line_to(x=xpos, y=ypos - (r_2 + margin) - r_6)
context.line_to(x=xpos - r_6, y=ypos - (r_2 + margin))
context.line_to(x=xpos - r_6, y=ypos)
context.stroke()
# If the ruler is to have a sight, then create tabs which user can fold out
if sight:
context.begin_path()
context.rectangle(x0=xpos, y0=ypos - r_2 * 0.65, x1=xpos + r_2 * 0.1, y1=ypos - r_2 * 0.85)
context.begin_sub_path()
context.rectangle(x0=xpos, y0=ypos + r_2 * 0.65, x1=xpos - r_2 * 0.1, y1=ypos + r_2 * 0.85)
context.stroke()
# Draw outlines of rule and the alidade
separation = 2.2 * unit_cm
context.set_font_size(0.9)
# Draw the rule (no sight)
rule_draw(context, 0 * unit_cm, 0 * unit_cm, False)
context.text(text="(a) Rule", x=-7 * unit_mm, y=r_2 + margin + 1.5 * r_6)
# Draw the alidade (with sight)
rule_draw(context, separation, 0 * unit_cm, True)
context.text(text="(b) Alidade", x=separation - 7 * unit_mm, y=r_2 + margin + 1.5 * r_6)
# Draw declination scale on rule
major_tick_length = 4 * unit_mm
minor_tick_length = 2 * unit_mm
if not is_southern:
context.set_font_size(1.0)
else:
context.set_font_size(0.7)
for dec in range(-25, 71, 5):
theta = (90 - dec) * unit_deg / 2
r = r_4 * tan(theta)
if is_southern:
dec *= -1
if (dec < 60) and (dec % 10 == 0):
context.begin_path()
context.move_to(x=0, y=-r)
context.line_to(x=-major_tick_length, y=-r)
context.stroke()
context.text(text="{}\u00b0".format(dec), x=-major_tick_length, y=-r,
v_align=1, rotation=90 * unit_deg)
context.begin_path()
context.move_to(x=0, y=r)
context.line_to(x=major_tick_length, y=r)
context.stroke()
context.text(text="{}\u00b0".format(dec), x=major_tick_length, y=r,
v_align=1, rotation=-90 * unit_deg)
else:
context.begin_path()
context.move_to(x=0, y=-r)
context.line_to(x=-minor_tick_length, y=-r)
context.move_to(x=0, y=r)
context.line_to(x=minor_tick_length, y=r)
context.stroke()
# Draw solar-altitude scale on alidade
if settings['astrolabe_type'] == 'full':
context.set_font_size(1.0)
for i in range(20, 91, 5):
r = r_12 * sin(i * unit_deg)
context.begin_path()
context.move_to(x=separation, y=-r)
context.line_to(x=separation - major_tick_length / 2, y=-r)
context.move_to(x=separation, y=r)
context.line_to(x=separation + major_tick_length / 2, y=r)
context.stroke()
for i in [20, 35, 50, 80]:
r = r_12 * sin(i * unit_deg)
context.begin_path()
context.move_to(x=separation, y=-r)
context.line_to(x=separation - major_tick_length, y=-r)
context.stroke()
context.text(text="{}\u00b0".format(i), x=separation - major_tick_length, y=-r,
v_align=1, rotation=90 * unit_deg)
context.begin_path()
context.move_to(x=separation, y=r)
context.line_to(x=separation + major_tick_length, y=r)
context.stroke()
context.text(text="{}\u00b0".format(i), x=separation + major_tick_length, y=r,
v_align=1, rotation=-90 * unit_deg)
# Do it right away if we're run as a script
if __name__ == "__main__":
# Fetch command line arguments passed to us
arguments = fetch_command_line_arguments(default_filename=Rule().default_filename())
# Render the rule and alidade
Rule(settings={
'latitude': arguments['latitude'],
'language': 'en'
}).render_to_file(
filename=arguments['filename'],
img_format=arguments['img_format']
)