-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathautoencoder.py
108 lines (91 loc) · 4.02 KB
/
autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# test pre-train of autoencoder
# the norm_gradient_variables converge, see "./testf/norm_gradient_variables.jpg (norm_gradient_variables for autoencoder (no bias).jpg)"
# for autoencoder.py
from __future__ import division, print_function, absolute_import
import tensorflow as tf
from numpy import linalg, arange, reshape
import matplotlib.pyplot as plt
from testf.fc import Autoencoder
def norm_w(v):
''' input must be a list with numpy array type elements'''
return sum([linalg.norm(i) for i in v])
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/home/decs/2017-DPGAN/code/wgan/mnist/MNIST", one_hot=True)
# Parameters, use the ones in medgan
# learning_rate = 0.001
# training_epochs = 100
# batch_size = 100
# Parameters, use the ones in "Auto Encoder Example"
learning_rate = 0.001
training_epochs = 20
batch_size = 256
display_step = 1
examples_to_show = 10
dataType = 'count'
inputDim = 784
embeddingDim = 128
compressDims = list(()) + [embeddingDim]
decompressDims = list(()) + [inputDim]
l2scale = 0.001
aeActivation = tf.nn.relu
ae_net = Autoencoder(inputDim, l2scale, compressDims, aeActivation, decompressDims,
dataType) # autoencoder network
# tf Graph input (only pictures)
X = tf.placeholder("float", [None, inputDim])
# Construct model
decoder_op, _ = ae_net(X)
# Prediction
y_pred = decoder_op
# Targets (Labels) are the input data.
y_true = X
# Define loss and optimizer, minimize the squared error
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
# optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) # in medgan
optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(cost)
# Initializing the variables
init = tf.initialize_all_variables()
# Explore trainable variables (weight_bias)
var = [v for v in tf.trainable_variables() if 'mimiciii/fc/autoencoder' in v.name] # (784, 128), (128,), (128, 784), (784,)
var_grad = tf.gradients(cost, var) # gradient of cost w.r.t. trainable variables, len(var_grad): 8, type(var_grad): list
norm_gradient_variables = []
# Launch the graph
with tf.Session() as sess:
writer = tf.train.SummaryWriter("./graph/my_graph", sess.graph)
sess.run(init)
total_batch = int(mnist.train.num_examples/batch_size)
# Training cycle
for epoch in range(training_epochs):
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
var_grad_val = sess.run(var_grad, feed_dict={X: batch_xs})
# var_grad_val = [var_grad_val[0], var_grad_val[2]] # no bias, change for different network
if type(var_grad_val) != type([0]): # if a is not a list, which indicate it contains only one weight matrix
var_grad_val = [var_grad_val]
norm_gradient_variables.append(norm_w(var_grad_val)) # compute the norm of all trainable variables
# Display logs per epoch step
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1),
"cost=", "{:.9f}".format(c))
print("Optimization Finished!")
plt.plot(arange(len(norm_gradient_variables)), norm_gradient_variables, 'b--')
plt.xlabel('Iterations')
plt.ylabel('Norm of gradients of all trainable variables')
plt.savefig('./norm_gradient_variables.jpg')
print("Gradient compuation Finished!")
# Applying encode and decode over test set
encode_decode = sess.run(
y_pred, feed_dict={X: mnist.test.images[:examples_to_show]})
# print('encode_decode')
# print(encode_decode)
# Compare original images with their reconstructions
f, a = plt.subplots(2, 10, figsize=(10, 2))
for i in range(examples_to_show):
a[0][i].imshow(reshape(mnist.test.images[i], (28, 28)))
a[1][i].imshow(reshape(encode_decode[i], (28, 28)))
f.show()
plt.draw()
plt.waitforbuttonpress()