-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_oneclasssvm.py
133 lines (115 loc) · 4.49 KB
/
train_oneclasssvm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import numpy as np
import argparse
from sklearn.model_selection import train_test_split
from sklearn.svm import OneClassSVM
from sklearn.impute import KNNImputer, SimpleImputer
from data_process import RealDataset
class Solver_OCSVM:
def __init__(
self,
data_name,
missing_ratio=0.0,
seed=0,
learning_rate=1e-3,
training_ratio=0.8,
):
# Data loader
# read data here
np.random.seed(seed)
data_path = "./data/" + data_name + ".npy"
self.result_path = "./results/{}/{}/OCSVM/{}/".format(data_name, missing_ratio, seed)
self.missing_ratio = missing_ratio
self.learning_rate = learning_rate
self.dataset = RealDataset(data_path, missing_ratio=missing_ratio)
self.seed = seed
self.data_path = data_path
self.data_anomaly_ratio = self.dataset.__anomalyratio__()
self.input_dim = self.dataset.__dim__()
self.data_normaly_ratio = 1 - self.data_anomaly_ratio
n_sample = self.dataset.__len__()
self.n_train = int(n_sample * training_ratio)
self.n_test = n_sample - self.n_train
if missing_ratio == 0.0:
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(
self.dataset.x,
self.dataset.y,
test_size= 1 - config.training_ratio,
random_state=seed,
)
if missing_ratio > 0.0:
x = self.dataset.x
m = self.dataset.m
x_with_missing = x
x_with_missing[m == 0] = np.nan
# imputer = KNNImputer(n_neighbors=2)
imputer = SimpleImputer()
x = imputer.fit_transform(x_with_missing)
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(
x,
self.dataset.y,
test_size=1 - config.training_ratio - config.validation_ratio,
random_state=seed,
)
print(
"|data dimension: {}|data noise ratio:{}".format(
self.dataset.__dim__(), self.data_anomaly_ratio
)
)
def train(self):
model = OneClassSVM()
model.fit(self.X_train)
self.best_model = model
def test(self):
print("======================TEST MODE======================")
# pred = self.best_model.predict(self.X_test)
score = self.best_model.score_samples(self.X_test)
thresh = np.percentile(score, self.data_anomaly_ratio * 100)
print("Threshold :", thresh)
pred = (score < thresh).astype(int)
# pred = pred < 0
gt = self.y_test.astype(int)
from sklearn.metrics import (
precision_recall_fscore_support as prf,
accuracy_score,
roc_auc_score
)
auc = roc_auc_score(gt, -self.best_model.decision_function(self.X_test))
accuracy = accuracy_score(gt, pred)
precision, recall, f_score, support = prf(gt, pred, average="binary")
print(
"Accuracy : {:0.4f}, Precision : {:0.4f}, Recall : {:0.4f}, F-score : {:0.4f}, AUC: {:0.4f}".format(
accuracy, precision, recall, f_score, auc
)
)
os.makedirs(self.result_path, exist_ok=True)
np.save(
self.result_path + "result.npy",
{
"auc": auc,
"accuracy": accuracy,
"precision": precision,
"recall": recall,
"f1": f_score,
},
)
return accuracy, precision, recall, f_score
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="AnomalyDetection")
parser.add_argument("--algorithm", type=str, default="AutoEncoder", required=False)
parser.add_argument("--seed", type=int, default=0, required=False)
parser.add_argument("--data", type=str, default="musk", required=False)
parser.add_argument("--missing_ratio", type=float, default=0.0, required=False)
parser.add_argument("--training_ratio", type=float, default=0.5, required=False)
parser.add_argument("--validation_ratio", type=float, default=0.1, required=False)
config = parser.parse_args()
np.random.seed(config.seed)
Solver = Solver_OCSVM(
data_name=config.data,
seed=config.seed,
missing_ratio=config.missing_ratio,
training_ratio=config.training_ratio,
validation_ratio=config.validation_ratio,
)
Solver.train()
Solver.test()