-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.m
41 lines (38 loc) · 1.09 KB
/
test.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
% Boyd & Vandenberghe, "Convex Optimization"
% Joëlle Skaf - 08/16/05
% (a figure is generated)
%
% The goal is to find the largest Euclidean ball (i.e. its center and
% radius) that lies in a polyhedron described by linear inequalites in this
% fashion: P = {x : a_i'*x <= b_i, i=1,...,m} where x is in R^2
% Generate the input data
a1 = [ 2; 1];
a2 = [ 2; -1];
a3 = [-1; 2];
a4 = [-1; -2];
b = ones(4,1);
% Create and solve the model
cvx_begin
variable r(1)
variable x_c(2)
maximize ( r )
a1'*x_c + r*norm(a1,2) <= b(1);
a2'*x_c + r*norm(a2,2) <= b(2);
a3'*x_c + r*norm(a3,2) <= b(3);
a4'*x_c + r*norm(a4,2) <= b(4);
cvx_end
% Generate the figure
x = linspace(-2,2);
theta = 0:pi/100:2*pi;
plot( x, -x*a1(1)./a1(2) + b(1)./a1(2),'b-');
hold on
plot( x, -x*a2(1)./a2(2) + b(2)./a2(2),'b-');
plot( x, -x*a3(1)./a3(2) + b(3)./a3(2),'b-');
plot( x, -x*a4(1)./a4(2) + b(4)./a4(2),'b-');
plot( x_c(1) + r*cos(theta), x_c(2) + r*sin(theta), 'r');
plot(x_c(1),x_c(2),'k+')
xlabel('x_1')
ylabel('x_2')
title('Largest Euclidean ball lying in a 2D polyhedron');
axis([-1 1 -1 1])
axis equal