-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_32bits.cpp
194 lines (147 loc) · 5.52 KB
/
main_32bits.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#include <chrono>
#include <cstdint>
#include <immintrin.h>
#include <iostream>
#include <vector>
// Modify as you like
#define SIZE_256 3000000
#define NUMBER_OF_SUM_RUN 100
// Do not touch
#define SIZE_32 SIZE_256 * (256 / 32)
struct RegularStruct {
uint32_t x;
uint32_t y;
uint32_t z;
};
struct StructOfArrays32Bits {
std::vector<uint32_t> x_vec;
std::vector<uint32_t> y_vec;
std::vector<uint32_t> z_vec;
};
struct StructOfArrays256Bits {
std::vector<__m256i> x_vec;
std::vector<__m256i> y_vec;
std::vector<__m256i> z_vec;
};
uint64_t sum_aos(const std::vector<struct RegularStruct> &threeDimensions) {
uint64_t sum = 0;
for (uint64_t i = 0; i < SIZE_32; i++) {
sum += threeDimensions[i].x;
}
return sum;
}
uint64_t sum_soa_32(const StructOfArrays32Bits &structOfArrays32Bits) {
uint64_t sum = 0;
for (uint64_t i = 0; i < SIZE_32; i++) {
sum += structOfArrays32Bits.x_vec[i];
}
return sum;
}
uint64_t sum_simd(const StructOfArrays256Bits &structOfArrays256Bits) {
uint64_t zeroes[4] = {0, 0, 0, 0};
// In loadu the u stands for unaligned because pointers by defaults
// are not aligned
__m256i sum = _mm256_loadu_si256((__m256i *)zeroes);
for (uint64_t i = 0; i < SIZE_256; i++) {
sum = _mm256_add_epi32(sum, structOfArrays256Bits.x_vec[i]);
}
uint32_t final_sum[8] = {0, 0, 0, 0, 0, 0, 0, 0};
// There are probably better ways to do it like lateral sum
_mm256_storeu_si256((__m256i *)final_sum, sum);
uint64_t acc = 0;
for (uint8_t i = 0; i < 8; i++)
acc += final_sum[i];
return acc;
}
const std::vector<struct RegularStruct> initArrayOfStruct() {
std::vector<struct RegularStruct> regularStruct;
regularStruct.reserve(SIZE_32);
for (uint64_t i = 0; i < SIZE_32; i++) {
regularStruct[i].x = (2);
regularStruct[i].y = (2);
regularStruct[i].z = (3);
}
return regularStruct;
}
const struct StructOfArrays32Bits initStructOfArrays32Bits() {
StructOfArrays32Bits structOfArrays32Bits;
structOfArrays32Bits.x_vec.reserve(SIZE_32);
structOfArrays32Bits.y_vec.reserve(SIZE_32);
structOfArrays32Bits.z_vec.reserve(SIZE_32);
for (uint64_t i = 0; i < SIZE_32; i++) {
structOfArrays32Bits.x_vec[i] = (2);
structOfArrays32Bits.y_vec[i] = (2);
structOfArrays32Bits.z_vec[i] = (3);
}
return structOfArrays32Bits;
}
const struct StructOfArrays256Bits initStructOfArrays256Bits() {
StructOfArrays256Bits structOfArrays256Bits;
structOfArrays256Bits.x_vec.reserve(SIZE_256);
structOfArrays256Bits.y_vec.reserve(SIZE_256);
structOfArrays256Bits.z_vec.reserve(SIZE_256);
uint32_t x_array[256 / 32];
for (uint64_t i = 0; i < 256 / 32; i++)
x_array[i] = 2;
uint32_t y_array[256 / 32];
for (uint64_t i = 0; i < 256 / 32; i++)
y_array[i] = 2;
uint32_t z_array[256 / 32];
for (uint64_t i = 0; i < 256 / 32; i++)
z_array[i] = 2;
for (uint64_t i = 0; i < SIZE_256; i++) {
structOfArrays256Bits.x_vec[i] = _mm256_loadu_si256((__m256i const *)x_array);
structOfArrays256Bits.y_vec[i] = _mm256_loadu_si256((__m256i const *)y_array);
structOfArrays256Bits.z_vec[i] = _mm256_loadu_si256((__m256i const *)z_array);
}
return structOfArrays256Bits;
}
int main(int argc, char *argv[]) {
using namespace std::chrono;
const auto begin = high_resolution_clock::now();
// Array of struct, no SIMD
const std::vector<struct RegularStruct> arrayOfStruct = initArrayOfStruct();
const auto init_aos = high_resolution_clock::now();
uint64_t x_aos = 0;
for (uint64_t i = 0; i < NUMBER_OF_SUM_RUN; i++)
x_aos += sum_aos(arrayOfStruct);
const auto sum_aos = high_resolution_clock::now();
// Struct of arrays, no SIMD
const StructOfArrays32Bits structOfArrays32Bits = initStructOfArrays32Bits();
const auto ini_soa_32 = high_resolution_clock::now();
uint64_t x_soa_32 = 0;
for (uint64_t i = 0; i < NUMBER_OF_SUM_RUN; i++)
x_soa_32 += sum_soa_32(structOfArrays32Bits);
const auto sum_soa_32 = high_resolution_clock::now();
// Struct of arrays, no SIMD
const StructOfArrays256Bits structOfArrays256Bits = initStructOfArrays256Bits();
const auto init_soa_256 = high_resolution_clock::now();
uint64_t x_soa_256 = 0;
for (int i = 0; i < NUMBER_OF_SUM_RUN; i++)
x_soa_256 += sum_simd(structOfArrays256Bits);
const auto sum_soa_256 = high_resolution_clock::now();
std::cout << "Array of structures " << std::endl
<< "Initialization="
<< duration_cast<milliseconds>(init_aos - begin).count()
<< "ms sum="
<< duration_cast<milliseconds>(sum_aos - init_aos).count() << "ms"
<< std::endl << std::endl;
std::cout << "Structure of arrays without SIMD" << std::endl
<< "Initialization="
<< duration_cast<milliseconds>(ini_soa_32 - sum_aos).count()
<< "ms sum="
<< duration_cast<milliseconds>(sum_soa_32 - ini_soa_32).count() << "ms"
<< std::endl << std::endl;
std::cout << "Structure of arrays with SIMD" << std::endl
<< "Initialization="
<< duration_cast<milliseconds>(init_soa_256 - sum_soa_32).count()
<< "ms sum="
<< duration_cast<milliseconds>(sum_soa_256 - init_soa_256).count() << "ms"
<< std::endl << std::endl;
if (x_aos != x_soa_256 || x_soa_32 != x_soa_256) {
std::cout << "Test failed. Results are different x_aos=" << x_aos << " x_soa_32=" << x_soa_32 << " x_soa_256=" << x_soa_256 << std::endl;
exit(EXIT_FAILURE);
}
std::cout << "Test succeeded (all values are the same). Result is " << x_aos << "." << std::endl;
return 0;
}