-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtrain_online_pixels.py
159 lines (137 loc) · 5.2 KB
/
train_online_pixels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#! /usr/bin/env python
import os
import pickle
import gym
import tqdm
import wandb
from absl import app, flags
from ml_collections import config_flags
import jaxrl2.extra_envs.dm_control_suite
from jaxrl2.agents import DrQLearner
from jaxrl2.data import MemoryEfficientReplayBuffer
from jaxrl2.evaluation import evaluate
from jaxrl2.wrappers import wrap_pixels
FLAGS = flags.FLAGS
flags.DEFINE_string("env_name", "cheetah-run-v0", "Environment name.")
flags.DEFINE_string("save_dir", "./tmp/", "Tensorboard logging dir.")
flags.DEFINE_integer("seed", 42, "Random seed.")
flags.DEFINE_integer("eval_episodes", 10, "Number of episodes used for evaluation.")
flags.DEFINE_integer("log_interval", 1000, "Logging interval.")
flags.DEFINE_integer("eval_interval", 5000, "Eval interval.")
flags.DEFINE_integer("batch_size", 256, "Mini batch size.")
flags.DEFINE_integer("max_steps", int(5e5), "Number of training steps.")
flags.DEFINE_integer(
"start_training", int(1e3), "Number of training steps to start training."
)
flags.DEFINE_integer("image_size", 64, "Image size.")
flags.DEFINE_integer("num_stack", 3, "Stack frames.")
flags.DEFINE_integer(
"replay_buffer_size", None, "Number of training steps to start training."
)
flags.DEFINE_integer(
"action_repeat", None, "Action repeat, if None, uses 2 or PlaNet default values."
)
flags.DEFINE_boolean("tqdm", True, "Use tqdm progress bar.")
flags.DEFINE_boolean("save_video", False, "Save videos during evaluation.")
flags.DEFINE_boolean("save_buffer", False, "Save the replay buffer.")
config_flags.DEFINE_config_file(
"config",
"configs/drq_default.py",
"File path to the training hyperparameter configuration.",
lock_config=False,
)
PLANET_ACTION_REPEAT = {
"cartpole-swingup-v0": 8,
"reacher-easy-v0": 4,
"cheetah-run-v0": 4,
"finger-spi-n-0": 2,
"ball_in_cup-catch-v0": 4,
"walker-walk-v0": 2,
}
def main(_):
wandb.init(project="jaxrl2_online_pixels")
wandb.config.update(FLAGS)
if FLAGS.action_repeat is not None:
action_repeat = FLAGS.action_repeat
else:
action_repeat = PLANET_ACTION_REPEAT.get(FLAGS.env_name, 2)
def wrap(env):
if "quadruped" in FLAGS.env_name:
camera_id = 2
else:
camera_id = 0
return wrap_pixels(
env,
action_repeat=action_repeat,
image_size=FLAGS.image_size,
num_stack=FLAGS.num_stack,
camera_id=camera_id,
)
env = gym.make(FLAGS.env_name)
env = wrap(env)
env = gym.wrappers.RecordEpisodeStatistics(env, deque_size=1)
env.seed(FLAGS.seed)
eval_env = gym.make(FLAGS.env_name)
eval_env = wrap(eval_env)
eval_env.seed(FLAGS.seed + 42)
kwargs = dict(FLAGS.config)
agent = DrQLearner(
FLAGS.seed, env.observation_space.sample(), env.action_space.sample(), **kwargs
)
replay_buffer_size = FLAGS.replay_buffer_size or FLAGS.max_steps // action_repeat
replay_buffer = MemoryEfficientReplayBuffer(
env.observation_space, env.action_space, replay_buffer_size
)
replay_buffer.seed(FLAGS.seed)
replay_buffer_iterator = replay_buffer.get_iterator(
sample_args={"batch_size": FLAGS.batch_size, "include_pixels": False}
)
observation, done = env.reset(), False
for i in tqdm.tqdm(
range(1, FLAGS.max_steps // action_repeat + 1),
smoothing=0.1,
disable=not FLAGS.tqdm,
):
if i < FLAGS.start_training:
action = env.action_space.sample()
else:
action = agent.sample_actions(observation)
next_observation, reward, done, info = env.step(action)
if not done or "TimeLimit.truncated" in info:
mask = 1.0
else:
mask = 0.0
replay_buffer.insert(
dict(
observations=observation,
actions=action,
rewards=reward,
masks=mask,
dones=done,
next_observations=next_observation,
)
)
observation = next_observation
if done:
observation, done = env.reset(), False
for k, v in info["episode"].items():
decode = {"r": "return", "l": "length", "t": "time"}
wandb.log({f"training/{decode[k]}": v}, step=i * action_repeat)
if i >= FLAGS.start_training:
batch = next(replay_buffer_iterator)
update_info = agent.update(batch)
if i % FLAGS.log_interval == 0:
for k, v in update_info.items():
wandb.log({f"training/{k}": v}, step=i * action_repeat)
if i % FLAGS.eval_interval == 0:
if FLAGS.save_buffer:
dataset_folder = os.path.join("datasets")
os.makedirs("datasets", exist_ok=True)
dataset_file = os.path.join(dataset_folder, f"{FLAGS.env_name}")
with open(dataset_file, "wb") as f:
pickle.dump(replay_buffer, f)
eval_info = evaluate(agent, eval_env, num_episodes=FLAGS.eval_episodes)
for k, v in eval_info.items():
wandb.log({f"evaluation/{k}": v}, step=i * action_repeat)
if __name__ == "__main__":
app.run(main)