-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathBenchMain.c
900 lines (790 loc) · 35.3 KB
/
BenchMain.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
// B.
#include "HohhaXor.h"
#include "MyRandom.h"
#include <sys/time.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <string.h>
#include <assert.h>
#include "libbase64.h"
#include <unistd.h>
uint32_t GetElapsedTimeInMilliSeconds(struct timeval *StartTime)
{
struct timeval Now;
gettimeofday (&Now, NULL);
return (Now.tv_sec - StartTime->tv_sec) * 1000 + (Now.tv_usec - StartTime->tv_usec) / 1000;
}
double PrintElapsedTime(struct timeval *StartTime, unsigned long long int TotalProcessedBytes)
{
double TotalMBytes = ((double)TotalProcessedBytes/(1024.0*1024));
unsigned EInMs = GetElapsedTimeInMilliSeconds(StartTime);
double Average = TotalMBytes / (1.0 * EInMs) * 1000.0;
printf("Total data processed: %6.2f MBytes Elapsed Time: %u ms. Average: %10.4f MBytes/secs \n",TotalMBytes, EInMs, Average);
return Average;
}
void IncByOne(uint8_t *Buf, uint32_t BufLen)
{
unsigned t;
for (t=0; t<BufLen; t++)
Buf[t]++;
}
uint8_t *CreateDataBuf(size_t Size)
{
uint8_t *B;
B = (uint8_t *)calloc(1, Size);
if (B == NULL)
{
printf("Out of memory!");
exit(-1);
}
return B;
}
//#define xorEncryptDecrypt xorEncryptDecryptHOP5
/* Memcpy Benchmark1 :
* This function
* Creates a N bytes random data buffer
* Creates another N bytes zero filled buffer (DestBuf)
* Starts an iteration
* For each iteration, increases every byte of the data by 1
* Copies the data buffer to DestBuf
* Prints the elapsed time
*/
double MemCpyBenchmark1(uint32_t TestSampleLength, uint32_t NumIterations)
{
uint8_t *Data = CreateDataBuf(TestSampleLength);
uint8_t *DestBuf = CreateDataBuf(TestSampleLength);
unsigned long long int TotalProcessedBytes = 0;
unsigned t;
/*printf("-------------------- MemCpyBenchmark1 1: BASIC FUNCTIONALITY -------------------------\n"
"This function\n 1.Creates a %u bytes random data buffer\nCreates another buffer(DestBuf) with the same size\nMakes %u iteration\n"
"For each iteration, increases every byte of the data by 1\nCopies the data buffer to DestBuf\nPrints the elapsed time",TestSampleLength,NumIterations);*/
printf("MemCpyBenchmark1 SampleLen: %u Iterations: %u ... ",TestSampleLength,NumIterations);
struct timeval StartTime;
gettimeofday (&StartTime, NULL);
for (t=0; t<NumIterations; t++)
{
IncByOne(Data, TestSampleLength);
memcpy(DestBuf, Data, TestSampleLength);
TotalProcessedBytes += TestSampleLength;
}
PrintElapsedTime(&StartTime,TotalProcessedBytes);
double Average = PrintElapsedTime(&StartTime,TotalProcessedBytes);
free(Data);
free(DestBuf);
return Average;
}
/* Benchmark1 :
* This function
* Creates a key with NumJumps particles and with a body length of BodyLen
* Creates a N bytes random zero filled buffer
* Starts an iteration of NumIterations times
* For each iteration, increases every byte of the data by 1
* Encrypts the data
* Prints the elapsed time
*/
double Benchmark1(uint8_t NumJumps, uint32_t BodyLen, uint32_t TestSampleLength, uint32_t NumIterations)
{
uint8_t *KeyBuf = (uint8_t *)malloc(xorComputeKeyBufLen(BodyLen));
uint8_t *Data = CreateDataBuf(TestSampleLength);
unsigned long long int TotalProcessedBytes = 0;
uint32_t t;
uint8_t Salt[SALT_SIZE];
int Err;
printf("Benchmark1 NumJumps: %u BodyLen: %u SampleLen: %u Iterations: %u ... ",NumJumps,BodyLen,TestSampleLength,NumIterations);
GetRandomNumbers(TestSampleLength, Data);
Err = xorGetKey(NumJumps, BodyLen, KeyBuf);
if (Err != 0)
{
printf("Couldn't create the key. Error: %d\n",Err);
exit(-1);
}
xorAnalyzeKey(KeyBuf);
struct timeval StartTime;
gettimeofday (&StartTime, NULL);
for (t=0; t<NumIterations; t++)
{
IncByOne(Data, TestSampleLength);
GetRandomNumbers(SALT_SIZE, Salt);
xorEncrypt(KeyBuf, (uint8_t *)(&Salt), TestSampleLength, Data);
TotalProcessedBytes += TestSampleLength;
}
double Average = PrintElapsedTime(&StartTime,TotalProcessedBytes);
free(Data);
free(KeyBuf);
return Average;
}
double BenchmarkHOP(uint8_t NumJumps, uint32_t BodyLen, uint32_t TestSampleLength, uint32_t NumIterations)
{
uint8_t *KeyBuf = (uint8_t *)malloc(xorComputeKeyBufLen(BodyLen)); assert (KeyBuf);
uint8_t *Data = CreateDataBuf(TestSampleLength);
unsigned long long int TotalProcessedBytes = 0;
uint32_t t;
uint8_t SaltData[SALT_SIZE];
assert(KeyBuf);
printf("BenchmarkHop NumJumps: %u BodyLen: %u SampleLen: %u Iterations: %u ... ",NumJumps,BodyLen,TestSampleLength,NumIterations);
GetRandomNumbers(SALT_SIZE, SaltData);
GetRandomNumbers(TestSampleLength, Data);
int Err = xorGetKey(NumJumps, BodyLen, KeyBuf);
if (Err != 0)
{
printf("Couldn't create the key. Error: %d\n",Err);
exit(-1);
}
xorAnalyzeKey(KeyBuf);
struct timeval StartTime;
gettimeofday (&StartTime, NULL);
THOPEncryptorFnc EncryptorFnc = xorGetProperHOPEncryptorFnc(KeyBuf);
for (t=0; t<NumIterations; t++)
{
IncByOne(Data, TestSampleLength);
EncryptorFnc(KeyBuf, (uint8_t *)(&SaltData), TestSampleLength, Data);
TotalProcessedBytes += TestSampleLength;
}
double Average = PrintElapsedTime(&StartTime,TotalProcessedBytes);
free(Data);
free(KeyBuf);
return Average;
}
double BenchmarkPack(uint8_t NumJumps, uint32_t BodyLen, uint32_t TestSampleLength, uint32_t NumIterations)
{
uint8_t KeyBuf[xorComputeKeyBufLen(BodyLen)];
uint8_t *Data = CreateDataBuf(TestSampleLength);
unsigned long long int TotalProcessedBytes = 0;
uint32_t t;
uint8_t SaltData[SALT_SIZE];
printf("SampleLen: %4u :: ",TestSampleLength);
GetRandomNumbers(SALT_SIZE, SaltData);
GetRandomNumbers(TestSampleLength, Data);
int Err = xorGetKey(NumJumps, BodyLen, KeyBuf);
if (Err != 0)
{
printf("Couldn't create the key. Error: %d\n",Err);
exit(-1);
}
//xorAnalyzeKey(KeyBuf);
struct timeval StartTime;
gettimeofday (&StartTime, NULL);
#define PACK_ALIGNMENT_BENCHMARK 16
uint8_t Packet[GetHohhaExactEncryptedPacketSize(TestSampleLength, PACK_ALIGNMENT_BENCHMARK)];
for (t=0; t<NumIterations; t++)
{
IncByOne(Data, TestSampleLength);
xorEncryptAndSign2(KeyBuf, TestSampleLength, Data, PACK_ALIGNMENT_BENCHMARK, (uint8_t *)&Packet);
TotalProcessedBytes += TestSampleLength;
}
double Average = PrintElapsedTime(&StartTime,TotalProcessedBytes);
free(Data);
return Average;
}
#define TESTSTR2 "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"
#define TESTSTR2_LEN strlen(TESTSTR2)
#define TESTSTR1 "TÜRKÇE karakter kullanınız DENEME. TÜRKÇE karakter kullanınız DENEME. uzuuuuuuun. TÜRKÇE karakter kullanınız DENEME. Çok uzun çok!222TÜRKÇE karakter kullanınız DENEME. TÜRKÇE karakter kullanınız DENEME. uzuuuuuuun. TÜRKÇE karakter kullanınız DENEME. Çok uzun çok!frfrTÜRKÇE karakter kullanınız DENEME. TÜRKÇE karakter kullanınız DENEME. uzuuuuuuun. TÜRKÇE karakter kullanınız DENEME. Çok uzun çok!"
#define TESTSTR1_LEN strlen(TESTSTR1)
void CheckOptimizedVersion(unsigned NumJumps, unsigned BodyLen)
{
unsigned long long int DLen;
THohhaAuthCode CheckSumReturnedFromEncryptor, CheckSumReturnedFromDecryptor;
unsigned RawKeyLen = xorComputeKeyBufLen(BodyLen);
uint8_t *KeyBuf = (uint8_t *)malloc(RawKeyLen); assert (KeyBuf);
uint8_t PlainTextBuf[132000], Data[132000];
uint8_t SaltData[SALT_SIZE];
GetRandomNumbers(SALT_SIZE, SaltData);
printf("-------------------- TESTING OPTIMIZED VERSION FOR %u JUMPS -------------------------\n",NumJumps);
int Err = xorGetKey(NumJumps, BodyLen, KeyBuf);
if (Err != 0)
{
printf("Couldn't create the key. Error: %d\n",Err);
exit(-1);
}
DLen = TESTSTR1_LEN;
memcpy(Data, TESTSTR1, DLen);
memcpy(PlainTextBuf, TESTSTR1, DLen);
for (DLen = 0; DLen < TESTSTR1_LEN; DLen++)
{
PlainTextBuf[DLen] = (uint8_t)(DLen & 255);
Data[DLen] = PlainTextBuf[DLen];
CheckSumReturnedFromEncryptor = xorEncrypt(KeyBuf, (uint8_t *)(&SaltData), ALIGN_TO_ROUND_UP64(DLen+1, sizeof(uint32_t)), Data); // We encrypt with non-optimized version
THOPDecryptorFnc DecryptorFnc = xorGetProperHOPDecryptorFnc(KeyBuf);
CheckSumReturnedFromDecryptor = DecryptorFnc(KeyBuf, (uint8_t *)(&SaltData), ALIGN_TO_ROUND_UP64(DLen+1, sizeof(uint32_t)), Data);
if (!AuthCodesMatch(&CheckSumReturnedFromEncryptor, &CheckSumReturnedFromDecryptor))
{
printf("Original Checksum returned from encryptor fnc <> Checksum returned from HOP decyptor\n"
"Encryptor returned: S1:%u S2:%u X:%u Y:%u\nDecryptor: S1:%u S2:%u X:%u Y:%u\n",
(unsigned)CheckSumReturnedFromEncryptor.S1, CheckSumReturnedFromEncryptor.S2,(unsigned)CheckSumReturnedFromEncryptor.X, (unsigned)CheckSumReturnedFromEncryptor.Y,
(unsigned)CheckSumReturnedFromDecryptor.S1, CheckSumReturnedFromDecryptor.S2,(unsigned)CheckSumReturnedFromDecryptor.X, (unsigned)CheckSumReturnedFromDecryptor.Y);
exit(-1);
}
if (memcmp((char *)Data, (char *)PlainTextBuf, DLen+1) != 0)
{
printf("String: %s ... optimized version test result: FAILED!!!!\n----------------------------------------\n", Data);
exit(-1);
}
}
printf("xorEncryptDecryptHOP%u SUCCESSFUL!\n",NumJumps);
}
void Test1(unsigned NumJumps, unsigned BodyLen)
{
unsigned long long int DLen;
THohhaAuthCode CheckSumReturnedFromEncryptor, CheckSumReturnedFromDecryptor;
unsigned RawKeyLen = xorComputeKeyBufLen(BodyLen);
uint8_t KeyBuf [RawKeyLen];
uint8_t Data[2048],Data2[2048];
char Base64EncodedKeyStr[BASE64_ENCODED_LEN(RawKeyLen)+1];
size_t l;
//uint8_t SaltData[SALT_SIZE];
//GetRandomNumbers(SALT_SIZE, SaltData);
uint8_t *SaltData = KeyBuf + SP_SALT_DATA;
printf("----------- TEST 1: BASIC FUNCTIONALITY(%u Jumps) --------------\n",NumJumps);
int Err = xorGetKey(NumJumps, BodyLen, KeyBuf);
if (Err != 0)
{
printf("Couldn't create the key. Error: %d\n",Err);
exit(-1);
}
base64_encode((const char *)KeyBuf, RawKeyLen, Base64EncodedKeyStr, &l, 0);
Base64EncodedKeyStr[l]='\0';
printf("Base64 encoded key: %s\n", Base64EncodedKeyStr);
xorAnalyzeKey(KeyBuf);
memset(&Data, 0, sizeof(Data));
memset(&Data2, 0, sizeof(Data2));
DLen = ALIGN_TO_ROUND_UP64(TESTSTR1_LEN+1, sizeof(uint32_t));
memcpy(Data, TESTSTR1, TESTSTR1_LEN);
memcpy(Data2, TESTSTR1, TESTSTR1_LEN);
CheckSumReturnedFromEncryptor = xorEncrypt(KeyBuf, SaltData, DLen, Data); // We encrypt with non-optimized version
// Now let's encrypt with the optimized encryptor
THOPEncryptorFnc EncryptorFnc = xorGetProperHOPEncryptorFnc(KeyBuf);
THOPDecryptorFnc DecryptorFnc = xorGetProperHOPDecryptorFnc(KeyBuf);
CheckSumReturnedFromEncryptor = EncryptorFnc(KeyBuf, SaltData, DLen, Data2);
if (memcmp((char *)Data, Data2, DLen) != 0)
{
printf("Non-optimized and optimized encryptor functions outputs are different! FAILED! FAILED!\n");
exit(-1);
} else printf("Non-optimized and optimized encryptor test PASS!\n");
char Base64CipherText[BASE64_ENCODED_LEN(DLen) + 7];
base64_encode((const char *)Data, DLen, Base64CipherText, &l, 0);
Base64CipherText[l] = '\0';
printf("Base64CipherText: %s\n", Base64CipherText);
printf("\n\nDecryption process:\n\n");
uint8_t K[RawKeyLen];
base64_decode(Base64EncodedKeyStr, l, (char *)K, &l, 0 );
if (memcmp((char *)KeyBuf, (char *)K, RawKeyLen) != 0)
{
printf("Original key and base64 encoded and decoded keys are different!!!!!\n");
exit(-1);
}
//CheckSumReturnedFromDecryptor = xorDecrypt(K, (uint8_t *)(&SaltData), DLen, Data);
CheckSumReturnedFromDecryptor = DecryptorFnc(K, SaltData, DLen, Data);
if (!AuthCodesMatch(&CheckSumReturnedFromEncryptor, &CheckSumReturnedFromDecryptor))
{
printf("Original Checksum returned from encryptor fnc <> Checksum returned from HOP decyptor\n"
"Encryptor returned: S1:%u S2:%u X:%u Y:%u\nDecryptor: S1:%u S2:%u X:%u Y:%u\n",
(unsigned)CheckSumReturnedFromEncryptor.S1, CheckSumReturnedFromEncryptor.S2,(unsigned)CheckSumReturnedFromEncryptor.X, (unsigned)CheckSumReturnedFromEncryptor.Y,
(unsigned)CheckSumReturnedFromDecryptor.S1, CheckSumReturnedFromDecryptor.S2,(unsigned)CheckSumReturnedFromDecryptor.X, (unsigned)CheckSumReturnedFromDecryptor.Y);
exit(-1);
}
if (memcmp((char *)Data, TESTSTR1, TESTSTR1_LEN) == 0)
{
printf("String: %s ... Test1 result: SUCCESSFUL!!!!\n----------------------------------------\n", Data);
}
else {
printf("String: %s ... Test1 result: FAILED!!!!\n----------------------------------------\n", Data);
exit(-1);
}
}
void CommPacketTest(unsigned NumJumps, unsigned BodyLen)
{
unsigned long long int DLen;
unsigned RawKeyLen = xorComputeKeyBufLen(BodyLen);
uint8_t KeyBuf[RawKeyLen];
uint8_t Data[2048],Data2[2048];
char Base64EncodedKeyStr[BASE64_ENCODED_LEN(RawKeyLen)+1];
uint8_t SaltData[SALT_SIZE];
size_t l;
GetRandomNumbers(SALT_SIZE, SaltData);
printf("----------- COMM PACKETS TEST(%u Jumps) --------------\n",NumJumps);
int Err = xorGetKey(NumJumps, BodyLen, KeyBuf);
if (Err != 0)
{
printf("Couldn't create the key. Error: %d\n",Err);
exit(-1);
}
base64_encode((const char *)KeyBuf, RawKeyLen, Base64EncodedKeyStr, &l, 0);
Base64EncodedKeyStr[l]='\0';
printf("Base64 encoded key: %s\n", Base64EncodedKeyStr);
memset(&Data, 0, sizeof(Data));
memset(&Data2, 0, sizeof(Data2));
DLen = TESTSTR1_LEN;
memcpy(Data, TESTSTR1, DLen);
#define PACK_ALIGNMENT 16
uint32_t CommPacketTotalSize = GetHohhaExactEncryptedPacketSize(DLen,PACK_ALIGNMENT);
uint8_t *CommPacket = malloc(CommPacketTotalSize);
xorEncryptAndSign2(KeyBuf, DLen, Data, PACK_ALIGNMENT, CommPacket);
char Base64EncodedCommPacket[BASE64_ENCODED_LEN(CommPacketTotalSize)+1];
base64_encode((const char *)CommPacket, CommPacketTotalSize, Base64EncodedCommPacket, &l, 0);
Base64EncodedCommPacket[l] = '\0';
printf("Encrypted communication packet: %s\n", Base64EncodedCommPacket);
// Now, let's decrypt it
ssize_t DpRes;
uint8_t *PPText = xorDecryptAndVerify(KeyBuf, CommPacketTotalSize, CommPacket, &DpRes);
if (DpRes < 0 || DpRes != DLen)
{
printf("xorDecryptAndVerify error: %lld. DLen: %lld\n", (long long int)DpRes, (long long int)DLen);
exit(-1);
}
// THohhaPacketHeader *PacketHeader = (THohhaPacketHeader *)CommPacket;
if (memcmp((char *)PPText, TESTSTR1, DLen) == 0)
{
printf("String: %.*s ... Hohha Comm Packet Test result: SUCCESSFUL!!!!\n----------------------------------------\n", (int)(DpRes), PPText);
}
else {
printf("String: %.*s ... Hohha Comm Packet Test result: FAILED!!!!\n----------------------------------------\n", (int)(DpRes), PPText);
exit(-1);
}
free(CommPacket);
/*CommPacketTotalSize = HOHHA_TOTAL_COMM_PACKET_SIZE_WITHOUT_ENCRYPTION(DLen);
CommPacket = calloc(1, CommPacketTotalSize);
xorEncryptAndSign2Plaintext(DLen, Data, CommPacket);
Base64EncodedCommPacket = Base64Encode((const char *)CommPacket, CommPacketTotalSize);
printf("Plaintext communication packet in base64: %s\n", Base64EncodedCommPacket);
free(Base64EncodedCommPacket);
// Now, let's decrypt it
PPText = xorDecryptAndVerify(KeyBuf, CommPacketTotalSize, CommPacket, &DpRes);
if (DpRes < 0 || DpRes != DLen)
{
printf("xorDecryptAndVerify error: %lld. DLen: %lld\n", (long long int)DpRes, (long long int)DLen);
exit(-1);
}
//PacketHeader = (THohhaPacketHeader *)CommPacket;
if (memcmp((char *)PPText, TESTSTR1, DLen) == 0)
{
printf("String: %.*s ... Hohha plaintext Comm Packet Test result: SUCCESSFUL!!!!\n----------------------------------------\n", (int)(DpRes), PPText);
}
else {
printf("String: %.*s ... Hohha plaintext Comm Packet Test result: FAILED!!!!\n----------------------------------------\n", (int)(DpRes), PPText);
exit(-1);
}
free(CommPacket);*/
// Variable length packets test
uint8_t *EncPack;
DLen = 0;
while (DLen < 2048)
{
Data[DLen] = (uint8_t)(DLen & 255);
DLen++;
EncPack = xorEncryptAndSign(KeyBuf, DLen, Data, 16);
if (!EncPack)
{
printf("xorEncryptAndSign FAILED!");
exit(-1);
}
PPText = xorDecryptAndVerify(KeyBuf, GetHohhaExactEncryptedPacketSize(DLen,16), EncPack, &DpRes);
if (!PPText || DpRes < 0)
{
printf("xorDecryptAndVerify error: %lld. DLen: %lld\n", (long long int)DpRes, (long long int)DLen);
exit(-1);
}
if (memcmp((char *)PPText, Data, DLen) != 0)
{
printf("xorDecryptAndVerify error: ORIGINAL DATA AND DECRYPTED DATA ARE NOT SAME! DLen: %lld\n", (long long int)DLen);
}
free(EncPack);
}
//exit(-1);
}
char *GetBinStr(uint32_t val, char *ResBuf)
{
char *p;
unsigned int t;
p = ResBuf;
t = 0x80000000; // scan 32 bits
for ( ; t > 0; t = t >> 1)
{
if (val & t)
*p++ = '1';
else *p++ = '0';
}
*p = 0;
return ResBuf;
}
void CircularShiftTest()
{
uint32_t t, Nn = (uint32_t)(0b10000000000000000000000000000010U);
char Buf[256];
printf("Circular shift left:\n");
for (t=0; t<5; t++)
{
printf("%s\n", GetBinStr(Nn,Buf));
ROL32_1(Nn);
}
printf("Circular shift right:\n");
for (t=0; t<6; t++)
{
printf("%s\n", GetBinStr(Nn,Buf));
ROR32_1(Nn);
}
}
#define BMP_FILE_HEADER_LEN 52
ssize_t EncryptBMPFile(const char *InFileName, const char *OutFileName, uint8_t *KeyBuf)
{ // Encrypts a bmp file for visual attack and returns -1 on error.
int32_t FDesc;
int64_t Len, RLen;
uint8_t *Data;
uint8_t SaltData[SALT_SIZE];
if ((FDesc = open(InFileName, O_RDONLY)) == -1)
{
printf("Error in opening file!\n");
return -1;
}
Len = lseek(FDesc, 0, SEEK_END);
if (lseek(FDesc, 0, SEEK_SET) != 0)
{
printf("Error seeking to beginning of file!\n");
return -1;
}
Data = (uint8_t *)malloc(Len);
if (Data == NULL)
{
printf("OUT OF MEMORY!\n");
close(FDesc);
free(Data);
return -1;
}
RLen = read(FDesc, Data, Len);
if (RLen != Len || RLen <= BMP_FILE_HEADER_LEN)
{
printf("Error in reading file!\n");
close(FDesc);
free(Data);
return -1;
}
close(FDesc);
//GetRandomNumbers(8, (uint8_t *)(&SaltData));
// Copy key's original salt value to salt buffer
memcpy(&SaltData, KeyBuf+SP_SALT_DATA, SALT_SIZE);
THOPEncryptorFnc EncryptorFnc = xorGetProperHOPEncryptorFnc(KeyBuf);
(void)EncryptorFnc(KeyBuf, (uint8_t *)(&SaltData), ALIGN_TO_ROUND_DOWN64(Len-BMP_FILE_HEADER_LEN-4, 4), Data + BMP_FILE_HEADER_LEN);
FDesc = open(OutFileName, O_CREAT | O_TRUNC | O_WRONLY, 777);
if (FDesc == -1) // FDesc = creat(OutFileName, 777)
{
printf("Error in creating output file: %s!\n", OutFileName);
free(Data);
return -1;
}
if (write(FDesc,Data,Len) != Len)
{
printf("Error writing file!\n");
free(Data);
return -1;
}
free(Data);
close(FDesc);
return 1;
}
#define SAMPLE_FILE_PATH "/Users/ikizir//Desktop/bmpsamples"
#define SAMPLE_OUT_FILE_PATH "/Users/ikizir/Desktop/bmpsamples/output"
static char FNameStaticBuf[256];
const char *GetFP(const char *FName)
{
sprintf(FNameStaticBuf, SAMPLE_FILE_PATH"/%s", FName);
return FNameStaticBuf;
}
static char FNameStaticBuf2[256];
const char *GetFP2(const char *FName)
{
sprintf(FNameStaticBuf2, SAMPLE_OUT_FILE_PATH"/%s", FName);
return FNameStaticBuf2;
}
void TestEncryptBMPFile(const char *InFileName, const char *OutFileName, unsigned NumJumps, unsigned BodyLen)
{
unsigned RawKeyLen = xorComputeKeyBufLen(BodyLen);
uint8_t *KeyBuf = (uint8_t *)malloc(RawKeyLen);
char Base64EncodedKeyStr[BASE64_ENCODED_LEN(RawKeyLen)+1];
size_t l;
printf("----------- BMPFILE ENC TEST(%u Jumps) --------------\n",NumJumps);
int Err = xorGetKey(NumJumps, BodyLen, KeyBuf);
if (Err != 0)
{
printf("\nTestEncryptBMPFile: Couldn't create the key. Error: %d\n\n",Err); fflush(stdout);
exit(-1);
}
base64_encode((const char *)KeyBuf, RawKeyLen, Base64EncodedKeyStr, &l, 0);
Base64EncodedKeyStr[l] = '\0';
printf("TestEncryptBMPFile: Base64 encoded key: %s\n", Base64EncodedKeyStr);
xorAnalyzeKey(KeyBuf);
EncryptBMPFile(InFileName, OutFileName, KeyBuf);
}
void CreateVisualProofs(void)
{
TestEncryptBMPFile(GetFP("allzero.bmp"), GetFP2("allzero_enc_2J_16.bmp"), 2, 16);
TestEncryptBMPFile(GetFP("allzero.bmp"), GetFP2("allzero_enc_3J_16.bmp"), 3, 16);
TestEncryptBMPFile(GetFP("allzero.bmp"), GetFP2("allzero_enc_4J_16.bmp"), 4, 16);
TestEncryptBMPFile(GetFP("allzero.bmp"), GetFP2("allzero_enc_2J_32.bmp"), 2, 32);
TestEncryptBMPFile(GetFP("allzero.bmp"), GetFP2("allzero_enc_3J_32.bmp"), 3, 32);
TestEncryptBMPFile(GetFP("allzero.bmp"), GetFP2("allzero_enc_4J_32.bmp"), 4, 32);
TestEncryptBMPFile(GetFP("allzero.bmp"), GetFP2("allzero_enc_2J_64.bmp"), 2, 64);
TestEncryptBMPFile(GetFP("allzero.bmp"), GetFP2("allzero_enc_3J_64.bmp"), 3, 64);
TestEncryptBMPFile(GetFP("allzero.bmp"), GetFP2("allzero_enc_4J_64.bmp"), 4, 64);
TestEncryptBMPFile(GetFP("allzero.bmp"), GetFP2("allzero_enc_2J_128.bmp"), 2, 128);
TestEncryptBMPFile(GetFP("allzero.bmp"), GetFP2("allzero_enc_3J_128.bmp"), 3, 128);
TestEncryptBMPFile(GetFP("allzero.bmp"), GetFP2("allzero_enc_4J_128.bmp"), 4, 128);
TestEncryptBMPFile(GetFP("allzero.bmp"), GetFP2("allzero_enc_2J_256.bmp"), 2, 256);
TestEncryptBMPFile(GetFP("allzero.bmp"), GetFP2("allzero_enc_3J_256.bmp"), 3, 256);
TestEncryptBMPFile(GetFP("allzero.bmp"), GetFP2("allzero_enc_4J_256.bmp"), 4, 256);
TestEncryptBMPFile(GetFP("panda.bmp"), GetFP2("panda_enc_2J_16.bmp"), 2, 16);
TestEncryptBMPFile(GetFP("panda.bmp"), GetFP2("panda_enc_3J_16.bmp"), 3, 16);
TestEncryptBMPFile(GetFP("panda.bmp"), GetFP2("panda_enc_4J_16.bmp"), 4, 16);
TestEncryptBMPFile(GetFP("panda.bmp"), GetFP2("panda_enc_2J_32.bmp"), 2, 32);
TestEncryptBMPFile(GetFP("panda.bmp"), GetFP2("panda_enc_3J_32.bmp"), 3, 32);
TestEncryptBMPFile(GetFP("panda.bmp"), GetFP2("panda_enc_4J_32.bmp"), 4, 32);
TestEncryptBMPFile(GetFP("panda.bmp"), GetFP2("panda_enc_2J_64.bmp"), 2, 64);
TestEncryptBMPFile(GetFP("panda.bmp"), GetFP2("panda_enc_3J_64.bmp"), 3, 64);
TestEncryptBMPFile(GetFP("panda.bmp"), GetFP2("panda_enc_4J_64.bmp"), 4, 64);
TestEncryptBMPFile(GetFP("panda.bmp"), GetFP2("panda_enc_2J_128.bmp"), 2, 128);
TestEncryptBMPFile(GetFP("panda.bmp"), GetFP2("panda_enc_3J_128.bmp"), 3, 128);
TestEncryptBMPFile(GetFP("panda.bmp"), GetFP2("panda_enc_4J_128.bmp"), 4, 128);
TestEncryptBMPFile(GetFP("panda.bmp"), GetFP2("panda_enc_2J_256.bmp"), 2, 256);
TestEncryptBMPFile(GetFP("panda.bmp"), GetFP2("panda_enc_3J_256.bmp"), 3, 256);
TestEncryptBMPFile(GetFP("panda.bmp"), GetFP2("panda_enc_4J_256.bmp"), 4, 256);
TestEncryptBMPFile(GetFP("Bitmap1.bmp"), GetFP2("Bitmap1_enc_2J_16.bmp"), 2, 16);
TestEncryptBMPFile(GetFP("Bitmap1.bmp"), GetFP2("Bitmap1_enc_3J_16.bmp"), 3, 16);
TestEncryptBMPFile(GetFP("Bitmap1.bmp"), GetFP2("Bitmap1_enc_4J_16.bmp"), 4, 16);
TestEncryptBMPFile(GetFP("Bitmap1.bmp"), GetFP2("Bitmap1_enc_2J_32.bmp"), 2, 32);
TestEncryptBMPFile(GetFP("Bitmap1.bmp"), GetFP2("Bitmap1_enc_3J_32.bmp"), 3, 32);
TestEncryptBMPFile(GetFP("Bitmap1.bmp"), GetFP2("Bitmap1_enc_4J_32.bmp"), 4, 32);
TestEncryptBMPFile(GetFP("Bitmap1.bmp"), GetFP2("Bitmap1_enc_2J_64.bmp"), 2, 64);
TestEncryptBMPFile(GetFP("Bitmap1.bmp"), GetFP2("Bitmap1_enc_3J_64.bmp"), 3, 64);
TestEncryptBMPFile(GetFP("Bitmap1.bmp"), GetFP2("Bitmap1_enc_4J_64.bmp"), 4, 64);
TestEncryptBMPFile(GetFP("Bitmap1.bmp"), GetFP2("Bitmap1_enc_2J_128.bmp"), 2, 128);
TestEncryptBMPFile(GetFP("Bitmap1.bmp"), GetFP2("Bitmap1_enc_3J_128.bmp"), 3, 128);
TestEncryptBMPFile(GetFP("Bitmap1.bmp"), GetFP2("Bitmap1_enc_4J_128.bmp"), 4, 128);
TestEncryptBMPFile(GetFP("Bitmap1.bmp"), GetFP2("Bitmap1_enc_2J_256.bmp"), 2, 256);
TestEncryptBMPFile(GetFP("Bitmap1.bmp"), GetFP2("Bitmap1_enc_3J_256.bmp"), 3, 256);
TestEncryptBMPFile(GetFP("Bitmap1.bmp"), GetFP2("Bitmap1_enc_4J_256.bmp"), 4, 256);
TestEncryptBMPFile(GetFP("Viking.bmp"), GetFP2("Viking_enc_2J_16.bmp"), 2, 16);
TestEncryptBMPFile(GetFP("Viking.bmp"), GetFP2("Viking_enc_3J_16.bmp"), 3, 16);
TestEncryptBMPFile(GetFP("Viking.bmp"), GetFP2("Viking_enc_4J_16.bmp"), 4, 16);
TestEncryptBMPFile(GetFP("Viking.bmp"), GetFP2("Viking_enc_2J_32.bmp"), 2, 32);
TestEncryptBMPFile(GetFP("Viking.bmp"), GetFP2("Viking_enc_3J_32.bmp"), 3, 32);
TestEncryptBMPFile(GetFP("Viking.bmp"), GetFP2("Viking_enc_4J_32.bmp"), 4, 32);
TestEncryptBMPFile(GetFP("Viking.bmp"), GetFP2("Viking_enc_2J_64.bmp"), 2, 64);
TestEncryptBMPFile(GetFP("Viking.bmp"), GetFP2("Viking_enc_3J_64.bmp"), 3, 64);
TestEncryptBMPFile(GetFP("Viking.bmp"), GetFP2("Viking_enc_4J_64.bmp"), 4, 64);
TestEncryptBMPFile(GetFP("Viking.bmp"), GetFP2("Viking_enc_2J_128.bmp"), 2, 128);
TestEncryptBMPFile(GetFP("Viking.bmp"), GetFP2("Viking_enc_3J_128.bmp"), 3, 128);
TestEncryptBMPFile(GetFP("Viking.bmp"), GetFP2("Viking_enc_4J_128.bmp"), 4, 128);
TestEncryptBMPFile(GetFP("Viking.bmp"), GetFP2("Viking_enc_2J_256.bmp"), 2, 256);
TestEncryptBMPFile(GetFP("Viking.bmp"), GetFP2("Viking_enc_3J_256.bmp"), 3, 256);
TestEncryptBMPFile(GetFP("Viking.bmp"), GetFP2("Viking_enc_4J_256.bmp"), 4, 256);
TestEncryptBMPFile(GetFP("B.bmp"), GetFP2("B_enc_2J_16.bmp"), 2, 16);
TestEncryptBMPFile(GetFP("B.bmp"), GetFP2("B_enc_3J_16.bmp"), 3, 16);
TestEncryptBMPFile(GetFP("B.bmp"), GetFP2("B_enc_4J_16.bmp"), 4, 16);
TestEncryptBMPFile(GetFP("B.bmp"), GetFP2("B_enc_2J_32.bmp"), 2, 32);
TestEncryptBMPFile(GetFP("B.bmp"), GetFP2("B_enc_3J_32.bmp"), 3, 32);
TestEncryptBMPFile(GetFP("B.bmp"), GetFP2("B_enc_4J_32.bmp"), 4, 32);
TestEncryptBMPFile(GetFP("B.bmp"), GetFP2("B_enc_2J_64.bmp"), 2, 64);
TestEncryptBMPFile(GetFP("B.bmp"), GetFP2("B_enc_3J_64.bmp"), 3, 64);
TestEncryptBMPFile(GetFP("B.bmp"), GetFP2("B_enc_4J_64.bmp"), 4, 64);
TestEncryptBMPFile(GetFP("B.bmp"), GetFP2("B_enc_2J_128.bmp"), 2, 128);
TestEncryptBMPFile(GetFP("B.bmp"), GetFP2("B_enc_3J_128.bmp"), 3, 128);
TestEncryptBMPFile(GetFP("B.bmp"), GetFP2("B_enc_4J_128.bmp"), 4, 128);
TestEncryptBMPFile(GetFP("B.bmp"), GetFP2("B_enc_2J_256.bmp"), 2, 256);
TestEncryptBMPFile(GetFP("B.bmp"), GetFP2("B_enc_3J_256.bmp"), 3, 256);
TestEncryptBMPFile(GetFP("B.bmp"), GetFP2("B_enc_4J_256.bmp"), 4, 256);
TestEncryptBMPFile(GetFP("penguen.bmp"), GetFP2("penguen_enc_2J_16.bmp"), 2, 16);
TestEncryptBMPFile(GetFP("penguen.bmp"), GetFP2("penguen_enc_3J_16.bmp"), 3, 16);
TestEncryptBMPFile(GetFP("penguen.bmp"), GetFP2("penguen_enc_4J_16.bmp"), 4, 16);
TestEncryptBMPFile(GetFP("penguen.bmp"), GetFP2("penguen_enc_2J_32.bmp"), 2, 32);
TestEncryptBMPFile(GetFP("penguen.bmp"), GetFP2("penguen_enc_3J_32.bmp"), 3, 32);
TestEncryptBMPFile(GetFP("penguen.bmp"), GetFP2("penguen_enc_4J_32.bmp"), 4, 32);
TestEncryptBMPFile(GetFP("penguen.bmp"), GetFP2("penguen_enc_2J_64.bmp"), 2, 64);
TestEncryptBMPFile(GetFP("penguen.bmp"), GetFP2("penguen_enc_3J_64.bmp"), 3, 64);
TestEncryptBMPFile(GetFP("penguen.bmp"), GetFP2("penguen_enc_4J_64.bmp"), 4, 64);
TestEncryptBMPFile(GetFP("penguen.bmp"), GetFP2("penguen_enc_2J_128.bmp"), 2, 128);
TestEncryptBMPFile(GetFP("penguen.bmp"), GetFP2("penguen_enc_3J_128.bmp"), 3, 128);
TestEncryptBMPFile(GetFP("penguen.bmp"), GetFP2("penguen_enc_4J_128.bmp"), 4, 128);
TestEncryptBMPFile(GetFP("penguen.bmp"), GetFP2("penguen_enc_2J_256.bmp"), 2, 256);
TestEncryptBMPFile(GetFP("penguen.bmp"), GetFP2("penguen_enc_3J_256.bmp"), 3, 256);
TestEncryptBMPFile(GetFP("penguen.bmp"), GetFP2("penguen_enc_4J_256.bmp"), 4, 256);
}
static void CreateKey(unsigned KBLen, unsigned NumJumps, uint8_t *KeyBuf)
{
unsigned RawKeyLen = xorComputeKeyBufLen(KBLen);
char Base64EncodedKeyStr[BASE64_ENCODED_LEN(RawKeyLen)+1];
size_t l;
int Err = xorGetKey(NumJumps, KBLen, KeyBuf);
if (Err != 0)
{
printf("\nCouldn't create the key. Error: %d\n",Err);
exit(-1);
}
base64_encode((const char *)KeyBuf, RawKeyLen, Base64EncodedKeyStr, &l, 0);
Base64EncodedKeyStr[l]='\0';
printf("Base64 encoded key: %s\n", Base64EncodedKeyStr);
xorAnalyzeKey(KeyBuf);
//exit(-1);
}
void EncAndSign(uint8_t *KeyBuf, uint8_t *Data, size_t DLen, unsigned PacketAlignment)
{
size_t l;
uint32_t CommPacketTotalSize = GetHohhaExactEncryptedPacketSize(DLen, PacketAlignment);
uint8_t *CommPacket = malloc(CommPacketTotalSize);
xorEncryptAndSign2(KeyBuf, DLen, Data, PacketAlignment, CommPacket);
char Base64EncodedCommPacket[BASE64_ENCODED_LEN(CommPacketTotalSize)+1];
base64_encode((const char *)CommPacket, CommPacketTotalSize, Base64EncodedCommPacket, &l, 0);
Base64EncodedCommPacket[l] = '\0';
printf("\n--Encrypted and signed packet: %s\n", Base64EncodedCommPacket);
free(CommPacket);
}
static void DecAndVerify(uint8_t *KeyBuf, const char *Base64EncodedCipherText)
{
size_t l, Base64EncodedCipherTextLen = strlen(Base64EncodedCipherText);
uint8_t Data2[BASE64_DECODED_BINBUF_REQUIREMENT(Base64EncodedCipherTextLen)];
base64_decode(Base64EncodedCipherText, Base64EncodedCipherTextLen, (char *)Data2, &l, 0);
// Now, let's decrypt it
ssize_t DpRes;
uint8_t *PPText = xorDecryptAndVerify(KeyBuf, l, Data2, &DpRes);
if (DpRes < 0)
{
printf("xorDecryptAndVerify error: %lld. DLen: %lld PPText: %s\n", (long long int)DpRes, (long long int)l, PPText);
exit(-1);
}
printf("Successfully decrypted string [%.*s]\n", (int)(DpRes), (char *)PPText);
}
static void RunBench(int NumIterations)
{
uint32_t BodyLen = 16;
Test1(2, BodyLen);
CommPacketTest(2, 64);
//CreateVisualProofs();
//exit(-1);
//CircularShiftTest();
//uint32_t TestSampleLength = 8192;
//D1();
//Test1(2, BodyLen);
//Test1(3, BodyLen);
//Test1(11, BodyLen);
//Test1(4, BodyLen);
//Test1(5, BodyLen);
//exit(-1);
//CheckOptimizedVersion(2, BodyLen);
//CheckOptimizedVersion(3, BodyLen);
//CheckOptimizedVersion(4, BodyLen);
//CheckOptimizedVersion(5, BodyLen);
//exit(-1);
double Average16M,Average64M,Average256M,Average1024M,Average8192M;
Average16M = MemCpyBenchmark1(16, NumIterations);
Average64M = MemCpyBenchmark1(64, NumIterations);
Average256M = MemCpyBenchmark1(256, NumIterations);
Average1024M = MemCpyBenchmark1(1024, NumIterations);
Average8192M = MemCpyBenchmark1(8192, NumIterations);
/*
double Average16,Average64,Average256,Average1024,Average8192;
Average16 = Benchmark1(NumJumps, BodyLen, 16, NumIterations);
Average64 = Benchmark1(NumJumps, BodyLen, 64, NumIterations);
Average256 = Benchmark1(NumJumps, BodyLen, 256, NumIterations);
Average1024 = Benchmark1(NumJumps, BodyLen, 1024, NumIterations);
Average8192 = Benchmark1(NumJumps, BodyLen, 8192, NumIterations);
printf("\n\nNON-HAND-OPTIMIZED VERSION BENCHMARKS:\n"
"16 64 256 1024 8192\n"
"------------------- ------------------- ------------------- -------------------- --------------------\n"
"%19.2f %19.2f %19.2f %19.2f %19.2f\n\n", Average16, Average64, Average256, Average1024, Average8192);
*/
#define DO_RAW_ENCRYPTION_BENCH
#if defined(DO_RAW_ENCRYPTION_BENCH)
double Average16H2,Average64H2,Average256H2,Average1024H2,Average8192H2;
double Average16H3,Average64H3,Average256H3,Average1024H3,Average8192H3;
double Average16H4,Average64H4,Average256H4,Average1024H4,Average8192H4;
Average16H2 = BenchmarkHOP(2, BodyLen, 16, NumIterations);
Average64H2 = BenchmarkHOP(2, BodyLen, 64, NumIterations);
Average256H2 = BenchmarkHOP(2, BodyLen, 256, NumIterations);
Average1024H2 = BenchmarkHOP(2, BodyLen, 1024, NumIterations);
Average8192H2 = BenchmarkHOP(2, BodyLen, 8192, NumIterations);
Average16H3 = BenchmarkHOP(3, BodyLen, 16, NumIterations);
Average64H3 = BenchmarkHOP(3, BodyLen, 64, NumIterations);
Average256H3 = BenchmarkHOP(3, BodyLen, 256, NumIterations);
Average1024H3 = BenchmarkHOP(3, BodyLen, 1024, NumIterations);
Average8192H3 = BenchmarkHOP(3, BodyLen, 8192, NumIterations);
Average16H4 = BenchmarkHOP(4, BodyLen, 16, NumIterations);
Average64H4 = BenchmarkHOP(4, BodyLen, 64, NumIterations);
Average256H4 = BenchmarkHOP(4, BodyLen, 256, NumIterations);
Average1024H4 = BenchmarkHOP(4, BodyLen, 1024, NumIterations);
Average8192H4 = BenchmarkHOP(4, BodyLen, 8192, NumIterations);
printf("\n\nRaw encryption benchmarks:\n"
"\n\n2-Jumps BENCHMARKS:\n"
"16 64 256 1024 8192 \n"
"------------------- ------------------- ------------------- ------------------- -------------------\n"
"%19.2f %19.2f %19.2f %19.2f %19.2f\n\n", Average16H2, Average64H2, Average256H2, Average1024H2, Average8192H2);
printf("\n\n3-Jumps BENCHMARKS:\n"
"16 64 256 1024 8192 \n"
"------------------- ------------------- ------------------- ------------------- -------------------\n"
"%19.2f %19.2f %19.2f %19.2f %19.2f\n\n", Average16H3, Average64H3, Average256H3, Average1024H3, Average8192H3);
printf("\n\n4-Jumps BENCHMARKS:\n"
"16 64 256 1024 8192 \n"
"------------------- ------------------- ------------------- ------------------- -------------------\n"
"%19.2f %19.2f %19.2f %19.2f %19.2f\n\n", Average16H4, Average64H4, Average256H4, Average1024H4, Average8192H4);
#endif
#define DO_PACKET_BENCH
#if defined(DO_PACKET_BENCH)
unsigned J;
for (BodyLen = 16; BodyLen<256; BodyLen <<= 1)
{
for (J=2; J<5; J++)
{
printf("----------------- PACKET CONSTRUCTION. BodyLen: %u NumJumps: %u Iterations: %u ----------------------\n",BodyLen,J,NumIterations);
BenchmarkPack(J, BodyLen, 16, NumIterations);
BenchmarkPack(J, BodyLen, 64, NumIterations);
BenchmarkPack(J, BodyLen, 256, NumIterations);
BenchmarkPack(J, BodyLen, 1024, NumIterations);
BenchmarkPack(J, BodyLen, 8192, NumIterations);
}
}
#endif
}
int32_t main(int32_t argc, char *argv[], char *envp[]) {
int c, KBLen=0, NumJumps=0;
uint8_t KeyBuf[512];
//unsigned CVP = 0;
size_t l;
unsigned PacketAlignment=16;
init_rand(time(NULL));
puts("\n");
/*base64_decode("AhAAb+nQZRF410edsZ+exzgMGyW/MO3hxJAH", strlen("AhAAb+nQZRF410edsZ+exzgMGyW/MO3hxJAH"), (char *)KeyBuf, &l, 0 );
xorAnalyzeKey(KeyBuf);
DecAndVerify(KeyBuf, "hsB8eglB8Og9ZHFtWNBjM5VwGB7MdnRjSBhCIP9rV+N3FEr8JO9/+gqQv0QuRxoHUc/kuA==");
exit(-1);*/
while ((c = getopt(argc, argv, "k:j:b:i:e:a:d:r:")) != EOF)
{
switch (c)
{
case 'a': // Packet alignment
PacketAlignment = atoi(optarg);
break;
case 'j': // Number of jumps for the key to be created
NumJumps = atoi(optarg);
if (NumJumps && KBLen)
CreateKey(KBLen, NumJumps, KeyBuf);
break;
case 'b': // Body len of the key to be created
KBLen = atoi(optarg);
if (NumJumps && KBLen)
CreateKey(KBLen, NumJumps, KeyBuf);
break;
case 'k': // User gives us an existing key in base64 format
base64_decode((const char *)optarg, strlen((const char *)optarg), (char *)KeyBuf, &l, 0 );
xorAnalyzeKey(KeyBuf);
break;
case 'e': // User wants to encrypt and sign utf8 string
EncAndSign(KeyBuf, (uint8_t *)optarg, strlen((const char *)optarg), PacketAlignment);
break;
case 'd': // User wants to decrypt and verify ciphertext encoded as base64
DecAndVerify(KeyBuf, (const char *)optarg);
break;
default :
RunBench(atoi(optarg));
break;
}
}
return 0;
}