-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy patheval.py
82 lines (59 loc) · 2.79 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import codecs
import json
import numpy as np
# Preventing pool_allocator message
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import argparse
import h5py
import inspect
from preprocessing import audio, text
from utils import generic_utils as utils
from utils.hparams import HParams
from datasets.dataset_generator import DatasetGenerator, DatasetIterator
from utils.core_utils import setup_gpu, load_model
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Evaluating an ASR system.')
parser.add_argument('--model', required=True, type=str)
parser.add_argument('--dataset', required=True, type=str)
parser.add_argument('--subset', type=str, default='test')
parser.add_argument('--batch_size', default=32, type=int)
# Features generation (if necessary)
parser.add_argument('--input_parser', type=str, default=None)
parser.add_argument('--input_parser_params', nargs='+', default=[])
# Label generation (if necessary)
parser.add_argument('--label_parser', type=str,
default='simple_char_parser')
parser.add_argument('--label_parser_params', nargs='+', default=[])
# Other configs
parser.add_argument('--gpu', default='0', type=str)
parser.add_argument('--allow_growth', default=False, action='store_true')
parser.add_argument('--save_transcriptions', default=None, type=str)
args = parser.parse_args()
args_nondefault = utils.parse_nondefault_args(
args, parser.parse_args(
['--model', args.model, '--dataset', args.dataset]))
# GPU configuration
setup_gpu(args.gpu, args.allow_growth)
# Loading model
model, meta = load_model(args.model, return_meta=True, mode='eval')
args = HParams(**meta['training_args']).update(vars(args_nondefault))
# Features extractor
input_parser = utils.get_from_module('preprocessing.audio',
args.input_parser,
params=args.input_parser_params)
# Recovering text parser
label_parser = utils.get_from_module('preprocessing.text',
args.label_parser,
params=args.label_parser_params)
data_gen = DatasetGenerator(input_parser, label_parser,
batch_size=args.batch_size, seed=0)
test_flow = data_gen.flow_from_fname(args.dataset, datasets=args.subset)
metrics = model.evaluate_generator(test_flow, test_flow.len,
max_q_size=10, nb_worker=1)
for m, v in zip(model.metrics_names, metrics):
print('%s: %4f' % (m, v))
from keras import backend as K; K.clear_session()