-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathrepresentation.py
97 lines (78 loc) · 3.26 KB
/
representation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch
from torch import nn
from torch.nn import functional as F
class Pyramid(nn.Module):
def __init__(self):
super(Pyramid, self).__init__()
self.net = nn.Sequential(
nn.Conv2d(7+3, 32, kernel_size=2, stride=2),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=2, stride=2),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=2, stride=2),
nn.ReLU(),
nn.Conv2d(128, 256, kernel_size=8, stride=8),
nn.ReLU()
)
def forward(self, x, v):
# Broadcast
v = v.view(-1, 7, 1, 1).repeat(1, 1, 64, 64)
r = self.net(torch.cat((v, x), dim=1))
return r
class Tower(nn.Module):
def __init__(self):
super(Tower, self).__init__()
self.conv1 = nn.Conv2d(3, 256, kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(256, 256, kernel_size=2, stride=2)
self.conv3 = nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv2d(128, 256, kernel_size=2, stride=2)
self.conv5 = nn.Conv2d(256+7, 256, kernel_size=3, stride=1, padding=1)
self.conv6 = nn.Conv2d(256+7, 128, kernel_size=3, stride=1, padding=1)
self.conv7 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.conv8 = nn.Conv2d(256, 256, kernel_size=1, stride=1)
def forward(self, x, v):
# Resisual connection
skip_in = F.relu(self.conv1(x))
skip_out = F.relu(self.conv2(skip_in))
r = F.relu(self.conv3(skip_in))
r = F.relu(self.conv4(r)) + skip_out
# Broadcast
v = v.view(v.size(0), 7, 1, 1).repeat(1, 1, 16, 16)
# Resisual connection
# Concatenate
skip_in = torch.cat((r, v), dim=1)
skip_out = F.relu(self.conv5(skip_in))
r = F.relu(self.conv6(skip_in))
r = F.relu(self.conv7(r)) + skip_out
r = F.relu(self.conv8(r))
return r
class Pool(nn.Module):
def __init__(self):
super(Pool, self).__init__()
self.conv1 = nn.Conv2d(3, 256, kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(256, 256, kernel_size=2, stride=2)
self.conv3 = nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv2d(128, 256, kernel_size=2, stride=2)
self.conv5 = nn.Conv2d(256+7, 256, kernel_size=3, stride=1, padding=1)
self.conv6 = nn.Conv2d(256+7, 128, kernel_size=3, stride=1, padding=1)
self.conv7 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.conv8 = nn.Conv2d(256, 256, kernel_size=1, stride=1)
self.pool = nn.AvgPool2d(16)
def forward(self, x, v):
# Resisual connection
skip_in = F.relu(self.conv1(x))
skip_out = F.relu(self.conv2(skip_in))
r = F.relu(self.conv3(skip_in))
r = F.relu(self.conv4(r)) + skip_out
# Broadcast
v = v.view(v.size(0), 7, 1, 1).repeat(1, 1, 16, 16)
# Resisual connection
# Concatenate
skip_in = torch.cat((r, v), dim=1)
skip_out = F.relu(self.conv5(skip_in))
r = F.relu(self.conv6(skip_in))
r = F.relu(self.conv7(r)) + skip_out
r = F.relu(self.conv8(r))
# Pool
r = self.pool(r)
return r