-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluation_metrics.py
147 lines (117 loc) · 4.51 KB
/
evaluation_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
"""
Evaluation metrics
"""
import numpy as np
import sklearn.metrics as metrics
import os
import glob
import cv2
from PIL import Image
def numeric_score(pred, gt):
FP = np.float(np.sum((pred == 1) & (gt == 0)))
FN = np.float(np.sum((pred == 0) & (gt == 1)))
TP = np.float(np.sum((pred == 1) & (gt == 1)))
TN = np.float(np.sum((pred == 0) & (gt == 0)))
return FP, FN, TP, TN
def numeric_score_fov(pred, gt, mask):
FP = np.float(np.sum((pred == 1) & (gt == 0) & (mask == 1)))
FN = np.float(np.sum((pred == 0) & (gt == 1) & (mask == 1)))
TP = np.float(np.sum((pred == 1) & (gt == 1) & (mask == 1)))
TN = np.float(np.sum((pred == 0) & (gt == 0) & (mask == 1)))
return FP, FN, TP, TN
def AUC(path):
all_auc = 0.
file_num = 0
for file in glob.glob(os.path.join(path, 'pred', '*pred.png')):
base_name = os.path.basename(file)
label_name = base_name[:-9] + '.png'
label_path = os.path.join(path, 'label', label_name)
mask_path = '/home/leila/PycharmProjects/Attention/assets/STARE(3)/mask.png'
pred_image = cv2.imread(file, flags=-1)
label = cv2.imread(label_path, flags=-1)
mask = cv2.imread(mask_path, flags=-1)
# with FOV
label_fov = []
pred_fov = []
w, h = pred_image.shape
for i in range(w):
for j in range(h):
if mask[i, j] == 255:
label_fov.append(label[i, j])
pred_fov.append(pred_image[i, j])
pred_image = (np.asarray(pred_fov)) / 255
label = np.uint8((np.asarray(label_fov)) / 255)
# pred_image = pred_image.flatten() / 255
# label = np.uint8(label.flatten() / 255)
auc_score = metrics.roc_auc_score(label, pred_image)
all_auc += auc_score
file_num += 1
avg_auc = all_auc / file_num
return avg_auc
def DSC(path):
all_dsc = 0.
file_num = 0
for file in glob.glob(os.path.join(path, 'pred', '*otsu.png')):
base_name = os.path.basename(file)
label_name = base_name[:-14] + '.png'
label_path = os.path.join(path, 'label', label_name)
pred = cv2.imread(file, flags=-1)
label = cv2.imread(label_path, flags=-1)
pred = pred // 255
label = label // 255
FP, FN, TP, TN = numeric_score(pred, label)
dsc = 2 * TP / (FP + 2 * TP + FN)
all_dsc += dsc
file_num += 1
avg_dsc = all_dsc / file_num
return avg_dsc
def AccSenSpe(path):
all_sen = []
all_acc = []
all_spe = []
for file in glob.glob(os.path.join(path, 'pred', '*otsu.png')):
base_name = os.path.basename(file)
label_name = base_name[:-14] + '.png'
label_path = os.path.join(path, 'label', label_name)
# mask_path = '/home/leila/PycharmProjects/Attention/assets/STARE(3)/mask.png'
pred = cv2.imread(file, flags=-1)
label = cv2.imread(label_path, flags=-1)
# mask = cv2.imread(mask_path, flags=-1)
pred = pred // 255
label = label // 255
# mask = mask // 255
FP, FN, TP, TN = numeric_score(pred, label)
acc = (TP + TN) / (TP + FP + TN + FN)
sen = TP / (TP + FN)
spe = TN / (TN + FP)
all_acc.append(acc)
all_sen.append(sen)
all_spe.append(spe)
avg_acc, avg_sen, avg_spe = np.mean(all_acc), np.mean(all_sen), np.mean(all_spe)
var_acc, var_sen, var_spe = np.var(all_acc), np.var(all_sen), np.var(all_spe)
return avg_acc, var_acc, avg_sen, var_sen, avg_spe, var_spe
def FDR(path):
all_fdr = []
for file in glob.glob(os.path.join(path, 'pred', '*otsu.png')):
base_name = os.path.basename(file)
label_name = base_name[:-14] + '.png'
label_path = os.path.join(path, 'label', label_name)
pred = cv2.imread(file, flags=-1)
label = cv2.imread(label_path, flags=-1)
pred = pred // 255
label = label // 255
FP, FN, TP, TN = numeric_score(pred, label)
fdr = FP / (FP + TP)
all_fdr.append(fdr)
return np.mean(all_fdr), np.var(all_fdr)
if __name__ == '__main__':
path = '/home/imed/Research/Attention/assets/Padova1-DANet/'
# auc = AUC(path)
acc, var_acc, sen, var_sen, spe, var_spe = AccSenSpe(path)
fdr, var_fdr = FDR(path)
print("sen:{0:.4f} +- {1:.4f}".format(sen, var_sen))
print("fdr:{0:.4f} +- {1:.4f}".format(fdr, var_fdr))
# print("acc:{0:.4f}".format(acc))
# print("sen:{0:.4f}".format(sen))
# print("spe:{0:.4f}".format(spe))
# print("auc:{0:.4f}".format(auc))