-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstencc.y
925 lines (884 loc) · 28.3 KB
/
stencc.y
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
%{
#include <stdio.h>
#include <stdlib.h>
#include "symbol.h"
#include "quad.h"
#include "quad_list.h"
#include "operator.h"
#include "array_dimension.h"
#include "assembly_generator.h"
//#define DEBUG
void debug(char*);
void yyerror(char*);
int yylex();
void lex_free();
struct symbol* symbol_list = NULL;
struct quad* quad_list = NULL;
FILE* yyin;
int err = 0;
%}
%union {
char* string;
int value;
struct {
struct symbol* result;
struct quad* code;
struct quad_list* true_list;
struct quad_list* false_list;
struct array_dimension* dimension;
}codegen;
}
%type <codegen> expression affectation statement define define_list
%type <codegen> statement_list declaration programme declaration_affectation
%type <codegen> mark condition control_structure array_declare array mark_array_load mark_array_write array_next
%token <string> ID STRING
%token <value> NUM
%token INT STENCIL MAIN RETURN VOID
%token IF WHILE ELSE FOR TRUE FALSE
%token CONST PRINTI PRINTF
%token OP_PLUS OP_INC OP_MINUS OP_DEC OP_DIFF
%token OP_STEN OP_EQUAL OP_ASSIGN OP_AND
%token OP_OR OP_NOT DEFINE_STRING
%token OP_MULTI OP_DIV OP_SUP OP_INF OP_SUP_EQUAL OP_INF_EQUAL
%left OP_OR
%left OP_AND
%left OP_NOT
%left OP_PLUS
%left OP_MINUS
%left OP_MULTI
%left OP_DIV
%%
/**
* @I. axiom
*/
axiom:
programme{
//Axiom de la grammaire
quad_list = $1.code;
debug("Match !\n");
return 0;
}
;
programme:
define_list INT MAIN '(' ')' '{' statement_list '}'{
//détection du main
debug("programme");
//$$.code = $6.code;
$$.code = $7.code;
struct quad* last_quad = quad_last($7.code);
//test d'analyse sémantique
if(last_quad->operator != E_RETURN){
//le programme doit se terminer par un return
printf("ERROR: main function must finish with a return statement\n");
exit(1);
}
}
;
/**
* @II. define
*/
//déclaration de plusieurs define
define_list:
define define_list{
}
|{
}
// les define de génère pas de code
// mais une entrée dans la TdS
define:
DEFINE_STRING ID NUM{
struct symbol* result = symbol_lookup(symbol_list, $2);
if(result == NULL){
result = symbol_add(&symbol_list, $2);
result->is_define = true;
result->is_initialised = true;
result->isconstant = true;
result->value = $3;
}else{
printf("ERROR: define already declared -> %s",$2);
exit(1);
}
free($2);
}
|
DEFINE_STRING ID {
struct symbol* result = symbol_lookup(symbol_list, $2);
if(result == NULL){
result = symbol_add(&symbol_list, $2);
result->is_define = true;
}else{
printf("ERROR: define already declared -> %s",$2);
exit(1);
}
free($2);
}
/**
* @III. statement_list
*/
statement_list:
statement statement_list {
$$.code = quad_add($1.code,$2.code);
debug("statement");
}
|
statement {
$$.code = $1.code;
debug("statement");
}
;
statement:
declaration ';' {
//une déclaration de génère pas de code
debug("declaration");
}
|
affectation ';' {
debug("affectation");
$$.code = $1.code;
debug("affectation");
}
|
declaration_affectation ';'{
debug("declare & affect");
$$.code = $1.code;
}
|
expression ';' {
$$.code = $1.code;
debug("expression");
}
|
control_structure {
$$.code = $1.code;
debug("control_structure");
}
|
PRINTI '(' expression ')' ';' {
//la variable affiché est dans un nouveau temporaire
$$.result = $3.result;
struct quad* code = quad_gen(E_PRINTI,$$.result,NULL,NULL);
$$.code = quad_add($3.code,code);
debug("printi expr");
}
|
PRINTF '(' STRING ')' ';' {
struct symbol* result = symbol_newtemp(&symbol_list);
result->isconstant = true;
result->string = $3;
$$.result = result;
$$.code = quad_gen(E_PRINTF,result,NULL,NULL);;
debug("printf");
}
|
RETURN expression ';' {
$$.code = quad_gen(E_RETURN,$2.result,NULL,NULL);
debug("return expression");
}
;
declaration:
INT ID {
struct symbol* result = symbol_lookup(symbol_list, $2);
debug("INT ID");
if(result == NULL){
result = symbol_add(&symbol_list, $2);
}else{
printf("ERROR: already declared variable -> %s",$2);
exit(1);
}
result->is_never_used = true;
$$.result = result;
$$.code = NULL;
free($2);
}
|
INT ID array_declare {
//voir IV. Array
debug("INT ID [...]");
int array_size = 0;
struct array_dimension* parcours;
struct symbol* result = symbol_lookup(symbol_list, $2);
if(result == NULL){
result = symbol_add(&symbol_list, $2);
}else{
printf("ERROR: already declared variable -> %s\n",$2);
exit(1);
}
result->is_array = true;
//association des dimensions du tableaux avec son entrée dans la TdS
result->array_dimension = $3.dimension;
parcours = $3.dimension;
//calcul du nombre total d'octets du tableau
array_size = parcours->size->value;
parcours = parcours ->next_dimension;
while(parcours != NULL){
array_size = array_size * parcours->size->value;
parcours = parcours->next_dimension;
}
array_size*=4;//*4 car un int est sur 4 octets
result->value = array_size;//taille dans le champs value pour allocation en assembleur
$$.result = NULL;
$$.code = NULL;
free($2);
}
;
/**
* @IV. array
*/
//la taille d'un tableau est forcément indiquer avec des valeurs constantes
array_declare:
'[' NUM ']' array_declare {
debug("array_declare [NUM]");
$$.dimension = malloc(sizeof(struct array_dimension));
struct symbol* size = symbol_newtemp_init(&symbol_list,$2);
$$.dimension->size = size;
$$.dimension->next_dimension = $4.dimension;
}
|
'[' ID ']' array_declare {
debug("[ID] array_declare");
$$.dimension = malloc(sizeof(struct array_dimension));
struct symbol* result = symbol_lookup(symbol_list, $2);
if(result == NULL){
printf("ERROR: undeclared variable -> %s\n",$2);
exit(1);
}
if(result->isconstant == true){
if(result->is_initialised == false){
printf("ERROR: array declaration using define with no value -> %s\n",$2);
exit(1);
}else{
$$.dimension->size = result;
$$.dimension->next_dimension = $4.dimension;
}
}else{
printf("ERROR: array declaration using a not constant value -> %s\n",$2);
exit(1);
}
free($2);
}
| '[' NUM ']' {
//dernière dimension du tableau: int tab[?][?]...[?][ici];
debug("[NUM]");
$$.dimension = malloc(sizeof(struct array_dimension));
struct symbol* size = symbol_newtemp_init(&symbol_list,$2);
$$.dimension->size = size;
}
| '[' ID ']' {
//dernière dimension du tableau: int tab[?][?]...[?][ici];
debug("[ID]");
$$.dimension = malloc(sizeof(struct array_dimension));
struct symbol* result = symbol_lookup(symbol_list, $2);
if(result == NULL){
printf("ERROR: undeclared variable -> %s\n",$2);
exit(1);
}
if(result->isconstant == true){
if(result->is_initialised == false){
printf("ERROR: array declaration using define with no value -> %s\n",$2);
exit(1);
}else{
$$.dimension->size = result;
}
}else{
printf("ERROR: array declaration using a not constant value -> %s\n",$2);
exit(1);
}
free($2);
}
//règle utiliser pour les accès en écriture ou lecture dans le tableau
array:
//on ne genère pas les mêmes quad pour la première dimension du tableau
expression ']' '[' array_next {
debug( "expr ] [ array_next");
$$.code = quad_add($1.code,$4.code);
$$.true_list = $4.true_list;
//on indique la valeur à multiplier aux quads suivants
$4.true_list->elt->arg1 = $1.result;
$$.result = $4.result;//calcul d'offset
}
|
expression ']'{
//pour les tableaux à une dimension
debug("expr ] ");
$$.result = $1.result;
$$.code = $1.code;//calcul d'offset
}
;
array_next:
//permet de faire (offset_precedant)*dimension_actuel + valeur
//le premier off_set est vide et est complété dans array
//les dimension_actuel sont remplie plus tard grâce à des quad_list (par convention true_list)
array_next '[' expression ']'{
debug("[ expr ] [ array_next");
struct symbol* result_mult = symbol_newtemp(&symbol_list);
struct symbol* result_plus = symbol_newtemp(&symbol_list);
struct quad* code = quad_add($1.code,$3.code);
//on va devoir compléter ce quad plus tard
struct quad* multi = quad_gen(E_MULT,result_mult,$1.result,NULL);
struct quad* plus = quad_gen(E_PLUS,result_plus,$3.result,result_mult);
struct quad_list* array_list = quad_list_new(multi);
array_list = quad_list_concat($1.true_list,array_list);
code = quad_add(code,multi);
code = quad_add(code,plus);
$$.true_list = array_list;
$$.code = code;
$$.result = result_plus;//calcul d'offset
}
|
expression ']' {
debug("expr ] ");
struct symbol* result_mult = symbol_newtemp(&symbol_list);
struct symbol* result_plus = symbol_newtemp(&symbol_list);
struct quad* code = $1.code;
struct quad* multi = quad_gen(E_MULT,result_mult,NULL,NULL);
struct quad* plus = quad_gen(E_PLUS,result_plus,$1.result,result_mult);
struct quad_list* array_list = quad_list_new(multi);
code = quad_add(code,multi);
code = quad_add(code,plus);
$$.true_list = array_list;
$$.code = code;
$$.result = result_plus;//calcul d'offset
}
;
mark_array_load:
{
struct symbol* result_mult = symbol_newtemp(&symbol_list); //offset total
struct symbol* result_addr = symbol_newtemp(&symbol_list); // addr
struct symbol* result_tab = symbol_newtemp(&symbol_list); //valeur à addr
//mult_size = arg1 = taille de la case mémoire arg2: offset (complété plus tard)
//taille de la case mémoire = 4 octets
struct quad* mult_size = quad_gen(E_MULT,result_mult,symbol_newtemp_init(&symbol_list,4),NULL);
struct quad* addr = quad_gen(E_PLUS,result_addr,result_mult,NULL);
struct quad* tab = quad_gen(E_TAB_LOAD,result_tab,result_addr,NULL);
$$.result = result_tab;//la valeur dans la case mémoire
$$.code = quad_add(mult_size,addr);
$$.code = quad_add($$.code,tab);
}
;
mark_array_write:
{
struct symbol* result_mult = symbol_newtemp(&symbol_list); //offset total
struct symbol* result_addr = symbol_newtemp(&symbol_list); // addr
//mult_size = arg1 = taille de la case mémoire arg2: offset (complété plus tard)
//taille de la case mémoire = 4 octets
struct quad* mult_size = quad_gen(E_MULT,result_mult,symbol_newtemp_init(&symbol_list,4),NULL);
struct quad* addr = quad_gen(E_PLUS,result_addr,result_mult,NULL);
$$.result = result_addr;//l'adresse où l'ont doit écrire
$$.code = quad_add(mult_size,addr);
}
;
/**
* @V. affectation
*/
affectation:
ID OP_ASSIGN expression {
struct symbol* result = symbol_lookup(symbol_list, $1);
if(result == NULL){
printf("ERROR: undeclared variable -> %s\n",$1);
exit(1);
}
if(result->is_array){
printf("ERROR: try to modify a array -> %s\n",$1);
exit(1);
}
if(result->isconstant){
printf("ERROR: try to modify a constant -> %s\n",$1);
exit(1);
}
result->is_initialised = true;
$$.result = result;
struct quad* quad = quad_gen(E_ASSIGN,result,$3.result,NULL);
struct quad* code = quad_add($3.code,quad);
$$.code = code;
debug("ID = expr");
free($1);
}
|
ID '['array mark_array_write OP_ASSIGN expression {
//voir IV. array
struct symbol* result = symbol_lookup(symbol_list, $1);
if(result == NULL){
printf("ERROR: undeclared variable -> %s\n",$1);
exit(1);
}
if(result->is_array == false){
printf("ERROR: %s is not a array\n",$1);
exit(1);
}
$4.code->arg2 = $3.result;//donner le calcul de l'offset (va être multiplier par 4)
$4.code->next->arg2 = result;//donner le nom du tableau pour le calcul de l'offset
struct quad* quad = quad_gen(E_TAB_WRITE,$6.result,$4.result,NULL);
struct quad* code = quad_add($3.code,$4.code);
//complète les quads de calcul d'offset avec les dimensions du tableau
quad_list_array_complete($3.true_list,result->array_dimension);
code = quad_add(code,$6.code);
code = quad_add(code,quad);
$$.code = code;
debug("ID [...] = expr");
free($1);
}
| ID OP_INC {
struct symbol* result = symbol_lookup(symbol_list, $1);
if(result == NULL){
printf("ERROR: undeclared variable -> %s\n",$1);
exit(1);
}
if(result->is_array == true){
printf("ERROR: can't do ++ to a array");
exit(1);
}
if(result->isconstant){
printf("ERROR: try to modify a constant -> %s\n",$1);
exit(1);
}
if(result->is_initialised == false){
printf("WARNING: using uninitialized variable -> %s\n",$1);
}
$$.result = result;
struct symbol* temp = symbol_newtemp_init(&symbol_list,1);
struct quad* quad = quad_gen(E_PLUS,result,result,temp);
$$.code = quad;
free($1);
}
| ID OP_DEC {
struct symbol* result = symbol_lookup(symbol_list, $1);
if(result == NULL){
printf("ERROR: undeclared variable -> %s\n",$1);
exit(1);
}
if(result->is_array == true){
printf("ERROR: can't do -- to a array");
exit(1);
}
if(result->isconstant){
printf("ERROR: try to modify a constant -> %s\n",$1);
exit(1);
}
if(result->is_initialised == false){
printf("WARNING: using uninitialized variable -> %s\n",$1);
}
$$.result = result;
struct symbol* temp = symbol_newtemp_init(&symbol_list,1);
struct quad* quad = quad_gen(E_MINUS,result,result,temp);
$$.code = quad;
free($1);
}
;
/**
* @VI. declaration_affectation
*/
declaration_affectation:
INT ID OP_ASSIGN expression {
debug("INT ID = expr");
struct symbol* result = symbol_lookup(symbol_list, $2);
if(result == NULL){
result = symbol_add(&symbol_list,$2);
}else{
printf("ERROR: already declared variable -> %s\n",$2);
exit(1);
}
result->is_initialised = true;
$$.result = result;
struct quad* quad = quad_gen(E_ASSIGN,result,$4.result,NULL);
struct quad* code = quad_add($4.code,quad);
$$.code = code;
free($2);
}
|
CONST INT ID OP_ASSIGN expression {
debug("CONST INT ID = expr");
struct symbol* result = symbol_lookup(symbol_list, $3);
if(result == NULL){
result = symbol_add(&symbol_list,$3);
result->isconstant = true;
}else{
printf("ERROR: already declared variable -> %s\n",$3);
exit(1);
}
result->is_initialised = true;
result->is_never_used = true;
$$.result = result;
struct quad* quad = quad_gen(E_ASSIGN,result,$5.result,NULL);
struct quad* code = quad_add($5.code,quad);
$$.code = code;
free($3);
}
;
/**
* @VII. expression
*/
expression:
expression OP_PLUS expression {
struct symbol* result = symbol_newtemp(&symbol_list);
$$.result = result;
struct quad* quad = quad_gen(E_PLUS,result,$1.result,$3.result);
struct quad* code = quad_add($1.code,$3.code);
code = quad_add(code,quad);
$$.code = code;
debug("expr + expr");
}
|
expression OP_MINUS expression {
struct symbol* result = symbol_newtemp(&symbol_list);
$$.result = result;
struct quad* quad = quad_gen(E_MINUS,result,$1.result,$3.result);
struct quad* code = quad_add($1.code,$3.code);
code = quad_add(code,quad);
$$.code = code;
debug(" expr - expr");
}
|
OP_MINUS expression {
debug("- expr");
struct symbol* result = symbol_newtemp(&symbol_list);
struct symbol * temp = symbol_newtemp_init(&symbol_list,0);
$$.result = result;
struct quad* quad = quad_gen(E_MINUS,result,temp,$2.result);
struct quad* code = quad_add($2.code,quad);
$$.code = code;
}
|
expression OP_MULTI expression {
debug("expr * expr");
struct symbol* result = symbol_newtemp(&symbol_list);
$$.result = result;
struct quad* quad = quad_gen(E_MULT,result,$1.result,$3.result);
struct quad* code = quad_add($1.code,$3.code);
code = quad_add(code,quad);
$$.code = code;
}
|
expression OP_DIV expression {
debug("expr / expr");
struct symbol* result = symbol_newtemp(&symbol_list);
$$.result = result;
struct quad* quad = quad_gen(E_DIV,result,$1.result,$3.result);
struct quad* code = quad_add($1.code,$3.code);
code = quad_add(code,quad);
$$.code = code;
}
|
'(' expression ')'{
debug("( expr ) ");
$$.result = $2.result;
$$.code = $2.code;
}
|
ID {
struct symbol* result = symbol_lookup(symbol_list, $1);
if(result == NULL){
printf("ERROR: undeclared variable -> %s\n",$1);
exit(1);
}
if(result->is_define == true){
if(result->is_initialised == false){
printf("ERROR: using define with no value -> %s\n",$1);
exit(1);
}
}
else if(result->is_initialised == false){
printf("WARNING: using uninitialized variable -> %s\n",$1);
}
result->is_never_used = false;
$$.result = result;
$$.code = NULL;
debug("ID");
free($1);
}
|
ID '['array mark_array_load {
//voir IV. array
struct symbol* result = symbol_lookup(symbol_list, $1);
if(result == NULL){
printf("ERROR: undeclared variable -> %s\n",$1);
exit(1);
}
if(result->is_array == false){
printf("ERROR: %s is not a array\n",$1);
exit(1);
}
$4.code->arg2 = $3.result;
$4.code->next->arg2 = result;
struct quad* code = quad_add($3.code,$4.code);
quad_list_array_complete($3.true_list,result->array_dimension);
$$.code = code;
$$.result = $4.result;
debug("ID [...]");
free($1);
}
|
NUM {
struct symbol* result = symbol_newtemp(&symbol_list);
result->isconstant = true;
result->value = $1;
$$.result = result;
$$.code = NULL;
debug("NUM");
}
;
/**
* @VIII. structures de contrôle
*/
mark:
//marqueur pour les else, for et while
{
$$.code = quad_gen(E_GOTO,NULL,NULL,NULL);
$$.false_list = quad_list_new($$.code);
$$.true_list = $$.false_list;
}
;
control_structure:
IF '(' condition ')' '{' statement_list '}' {
debug("if (condition) {statement_list}");
//permet de gérer le cas où la statement_list est vide
//actuellement inutile avec cette grammaire car statement_list dérive toujours en au moins un element
struct quad* last_condition = quad_last($3.code);
struct quad* last_statement;
struct symbol* where_true = symbol_newtemp_init(&symbol_list,last_condition->number+1);
struct symbol* where_false;
quad_list_complete($3.true_list,where_true);
$$.code = quad_add($3.code,$6.code);
//permet de gérer le cas où la statement_list est vide
//actuellement inutile avec cette grammaire car statement_list dérive toujours en au moins un element
if($6.code != NULL){
last_statement = quad_last($6.code);
}else{
last_statement = quad_last($3.code);
}
where_false = symbol_newtemp_init(&symbol_list,last_statement->number + 1);
quad_list_complete($3.false_list,where_false);
}
|
IF '(' condition ')' '{' statement_list '}' ELSE '{' mark statement_list '}'{
//voir IF '(' condition ')' '{' statement_list '}'
//mark permet de créer le goto pour sortir du if sans exécuté le code du else
debug("if (condition) {statement_list} else { statement_list}");
struct quad* last_condition = quad_last($3.code);
struct quad* code;
struct quad* last_statement;
struct symbol* where_true = symbol_newtemp_init(&symbol_list,last_condition->number+1);
struct symbol* where_false;
//$3.false_list = quad_list_concat($3.false_list,$10.false_list);
quad_list_complete($3.false_list,symbol_newtemp_init(&symbol_list,$10.code->number+1));
quad_list_complete($3.true_list,where_true);
code = quad_add($3.code,$6.code);
code = quad_add(code,$10.code);
code = quad_add(code,$11.code);
$$.code = code;
if($11.code != NULL){
last_statement = quad_last($11.code);
}else{
last_statement = $10.code;
}
where_false = symbol_newtemp_init(&symbol_list,last_statement->number + 1);
quad_list_complete($10.false_list,where_false);
}
|
WHILE '(' condition ')' '{' statement_list mark '}' {
//mark permet d'avoir le goto pour retourner dans la condition
debug("while (condition) {statement_list}");
struct quad* last_condition = quad_last($3.code);
struct quad* code;
struct quad* last_statement;
struct symbol* where_true = symbol_newtemp_init(&symbol_list,last_condition->number+1);
struct symbol* where_false;
struct symbol* where_begin = symbol_newtemp_init(&symbol_list,$3.code->number);
quad_list_complete($7.true_list,where_begin);
quad_list_complete($3.true_list,where_true);
$3.code->need_label = true;//pour l'assembleur
code = quad_add($3.code,$6.code);
code = quad_add(code,$7.code);
$$.code = code;
//dernière instruction a faire dans la boucle
if($6.code != NULL){
last_statement = quad_last($6.code);
}else{
last_statement = $7.code;
}
where_false = symbol_newtemp_init(&symbol_list,last_statement->number + 1);
quad_list_complete($3.false_list,where_false);
}
|
FOR '('affectation ';' condition ';' affectation mark ')' '{' statement_list mark'}' {
//1er mark: permet de passer de l'affection de fin d'itération au test de condition
//2ème mark: permet de jump de la dernière instruction de la boucle à l'affectation de fin de boucle
debug("for (affectation; condition; affectation){ statement_list } ");
//concaténation du code
struct quad* code = quad_add($3.code,$5.code);
code = quad_add(code,$7.code);
code = quad_add(code,$8.code);
code = quad_add(code,$11.code);
code = quad_add(code,$12.code);
//pour l'assembleur
$5.code->need_label = true;
$7.code->need_label = true;
//remplir les quad_list
struct symbol* where_false = symbol_newtemp_init(&symbol_list,$12.code->number + 1);
struct symbol* where_true = symbol_newtemp_init(&symbol_list,$8.code->number + 1);
struct symbol* where_begin_condition = symbol_newtemp_init(&symbol_list,$5.code->number);
struct symbol* where_incr = symbol_newtemp_init(&symbol_list,$7.code->number);
quad_list_complete($5.true_list,where_true);
quad_list_complete($5.false_list,where_false);
quad_list_complete($8.true_list,where_begin_condition);
quad_list_complete($12.true_list,where_incr);
$$.code = code;
}
;
/**
* @IIX. condition
*/
condition:
expression OP_EQUAL expression {
debug("elt == elt");
struct quad* codeTrue = quad_gen(E_EQUAL,NULL,$1.result,$3.result); //if ( a == b) goto ?
struct quad* codeFalse = quad_gen(E_GOTO,NULL,NULL,NULL); // goto ?
struct quad* code = quad_add(codeTrue,codeFalse);
$$.code = code;
$$.true_list = quad_list_new(codeTrue);
$$.false_list = quad_list_new(codeFalse);
}
|
expression OP_SUP expression {
debug("elt > elt");
struct quad* codeTrue = quad_gen(E_SUPERIOR,NULL,$1.result,$3.result);
struct quad* codeFalse = quad_gen(E_GOTO,NULL,NULL,NULL);
struct quad* code = quad_add(codeTrue,codeFalse);
$$.code = code;
$$.true_list = quad_list_new(codeTrue);
$$.false_list = quad_list_new(codeFalse);
}
|
expression OP_INF expression {
debug("elt < elt");
struct quad* codeTrue = quad_gen(E_INFERIOR,NULL,$1.result,$3.result);
struct quad* codeFalse = quad_gen(E_GOTO,NULL,NULL,NULL);
struct quad* code = quad_add(codeTrue,codeFalse);
$$.code = code;
$$.true_list = quad_list_new(codeTrue);
$$.false_list = quad_list_new(codeFalse);
}
|
expression OP_SUP_EQUAL expression {
debug("elt >= elt");
struct quad* codeTrue = quad_gen(E_SUPEQUAL,NULL,$1.result,$3.result);
struct quad* codeFalse = quad_gen(E_GOTO,NULL,NULL,NULL);
struct quad* code = quad_add(codeTrue,codeFalse);
$$.code = code;
$$.true_list = quad_list_new(codeTrue);
$$.false_list = quad_list_new(codeFalse);
}
|
expression OP_DIFF expression {
debug("elt != elt");
struct quad* codeTrue = quad_gen(E_DIFFERENT,NULL,$1.result,$3.result);
struct quad* codeFalse = quad_gen(E_GOTO,NULL,NULL,NULL);
struct quad* code = quad_add(codeTrue,codeFalse);
$$.code = code;
$$.true_list = quad_list_new(codeTrue);
$$.false_list = quad_list_new(codeFalse);
}
|
expression OP_INF_EQUAL expression {
debug("elt <= elt");
struct quad* codeTrue = quad_gen(E_INFEQUAL,NULL,$1.result,$3.result);
struct quad* codeFalse = quad_gen(E_GOTO,NULL,NULL,NULL);
struct quad* code = quad_add(codeTrue,codeFalse);
$$.code = code;
$$.true_list = quad_list_new(codeTrue);
$$.false_list = quad_list_new(codeFalse);
}
|
TRUE {
$$.code = quad_gen(E_GOTO,NULL,NULL,NULL);
$$.true_list = quad_list_new($$.code);
debug("true");
}
|
FALSE {
$$.code = quad_gen(E_GOTO,NULL,NULL,NULL);
$$.false_list = quad_list_new($$.code);
debug("false");
}
|
condition OP_OR condition {
debug("condition || condition");
$$.true_list = quad_list_concat($1.true_list,$3.true_list);
$$.false_list = $3.false_list;
struct symbol* where_to_go = symbol_newtemp(&symbol_list);
where_to_go->isconstant = true;
where_to_go->value = $3.code->number;
quad_list_complete($1.false_list,where_to_go);
$$.code = quad_add($1.code,$3.code);
}
|
condition OP_AND condition {
debug("condition && condition");
$$.false_list = quad_list_concat($1.false_list,$3.false_list);
struct symbol* where_to_go = symbol_newtemp(&symbol_list);
where_to_go->isconstant = true;
where_to_go->value = $3.code->number;
quad_list_complete($1.true_list,where_to_go);
$$.true_list = $3.true_list;
$$.code = quad_add($1.code,$3.code);
}
|
OP_NOT condition {
debug("!condition");
$$.true_list = $2.false_list;
$$.false_list = $2.true_list;
$$.code = $2.code;
}
|
'(' condition ')' {
debug("( condition ) ");
$$.true_list = $2.true_list;
$$.false_list = $2.false_list;
$$.code = $2.code;
}
;
%%
void yyerror (char *s) {
extern int yylineno;
err = 1;
fprintf(stderr, "[Yacc] error near line %d : %s\n", yylineno, s);
}
void debug (char* s){
#ifdef DEBUG
fprintf(stderr, "[Yacc] ");
fprintf(stderr, "%s\n",s);
#endif
}
int main(int argc, char* argv[]) {
if (argc != 2) {
fprintf(stderr, "error with arguments\n");
exit(1);
}
yyin = fopen(argv[1], "r");
if (yyin == NULL) {
fprintf(stderr, "unable to open file %s\n", argv[1]);
exit(1);
}
yyparse();
if (err == 0) {
#ifdef DEBUG
printf("-----------------\nSymbol table:\n");
symbol_print(symbol_list);
printf("-----------------\nQuad list:\n");
quad_print(quad_list);
#endif
//generation code assembleur
generator(symbol_list, quad_list);
}
struct symbol* parcours = symbol_list;
while(parcours != NULL){
if(parcours->is_never_used == true){
printf("WARNING: %s is never used\n",parcours->identifier);
}
parcours = parcours->next;
}
// Be clean.
lex_free();
quad_free(quad_list);
symbol_free(symbol_list);
return 0;
}