-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path4. Median of Two Sorted Arrays.py
218 lines (205 loc) · 6.61 KB
/
4. Median of Two Sorted Arrays.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Passed
import bisect
class Solution(object):
def findMedianSortedArrays(self, nums1, nums2):
"""
:type nums1: List[int]
:type nums2: List[int]
:rtype: float
"""
print nums1, nums2
print len(nums1),len(nums2)
smaller_len = min(len(nums1),len(nums2))
if len(nums1)+len(nums2) == 1:
return sum(nums1)+sum(nums2)
#
if len(nums1) == 0:
print 'in 1'
return self.find_median(nums2)
#
if len(nums2) == 0:
print 'in 2'
return self.find_median(nums1)
#
if len(nums1) == 1:
print 'in 3'
bisect.insort(nums2, nums1[0])
return self.find_median(nums2)
#
if len(nums2) == 1:
print 'in 4'
bisect.insort(nums1, nums2[0])
return self.find_median(nums1)
#
if len(nums1) == 2:
print 'in 5'
bisect.insort(nums2, nums1[0])
bisect.insort(nums2, nums1[1])
return self.find_median(nums2)
#
if len(nums2) == 2:
print 'in 6'
bisect.insort(nums1, nums2[0])
bisect.insort(nums1, nums2[1])
return self.find_median(nums1)
if nums1[-1] <= nums2[0]:
print 'in 7'
return self.find_median(nums1 + nums2)
#
if nums2[-1] <= nums1[0]:
print 'in 8'
return self.find_median(nums2 + nums1)
#
median1 = self.find_median(nums1)
median2 = self.find_median(nums2)
if median1 < median2:
print 'in 9'
return self.findMedianSortedArrays(nums1[(smaller_len-1)//2:], nums2[:(len(nums2)) - (smaller_len-1)//2])
elif median1 == median2:
print 'in 10'
return median1
else:
print 'in 11'
return self.findMedianSortedArrays(nums2[(smaller_len-1)//2:], nums1[:(len(nums1)) - (smaller_len-1)//2])
#
def find_median(self,a):
if len(a) % 2 ==0:
return (a[len(a)//2]+a[len(a)//2-1]) / 2.0
else:
return a[len(a)//2]
# Optimised
import bisect
class Solution(object):
def findMedianSortedArrays(self, nums1, nums2):
"""
:type nums1: List[int]
:type nums2: List[int]
:rtype: float
"""
if len(nums1) > 2 and len(nums2) > 2:
print nums1, nums2
print len(nums1),len(nums2)
smaller_len = min(len(nums1),len(nums2))
# if len(nums1)+len(nums2) == 1:
# return sum(nums1)+sum(nums2)
#
if nums1[-1] <= nums2[0]:
print 'in 7'
return self.find_median(nums1 + nums2)
#
if nums2[-1] <= nums1[0]:
print 'in 8'
return self.find_median(nums2 + nums1)
#
median1 = self.find_median(nums1)
median2 = self.find_median(nums2)
if median1 < median2:
print 'in 9'
return self.findMedianSortedArrays(nums1[(smaller_len-1)//2:], nums2[:(len(nums2)) - (smaller_len-1)//2])
elif median1 == median2:
print 'in 10'
return median1
else:
print 'in 11'
return self.findMedianSortedArrays(nums2[(smaller_len-1)//2:], nums1[:(len(nums1)) - (smaller_len-1)//2])
#
if len(nums1) == 0:
print 'in 1'
return self.find_median(nums2)
#
if len(nums2) == 0:
print 'in 2'
return self.find_median(nums1)
#
if len(nums1) == 1:
print 'in 3'
bisect.insort(nums2, nums1[0])
return self.find_median(nums2)
#
if len(nums2) == 1:
print 'in 4'
bisect.insort(nums1, nums2[0])
return self.find_median(nums1)
#
if len(nums1) == 2:
print 'in 5'
bisect.insort(nums2, nums1[0])
bisect.insort(nums2, nums1[1])
return self.find_median(nums2)
#
if len(nums2) == 2:
print 'in 6'
bisect.insort(nums1, nums2[0])
bisect.insort(nums1, nums2[1])
return self.find_median(nums1)
#
def find_median(self,a):
if len(a) % 2 ==0:
return (a[len(a)//2]+a[len(a)//2-1]) / 2.0
else:
return a[len(a)//2]
# Optimised & Cleaned
import bisect
class Solution(object):
def findMedianSortedArrays(self, nums1, nums2):
## General Cases
if len(nums1) > 2 and len(nums2) > 2:
print nums1, nums2
print len(nums1),len(nums2)
smaller_len = min(len(nums1),len(nums2))
if nums1[-1] <= nums2[0]:
return self.find_median(nums1 + nums2)
if nums2[-1] <= nums1[0]:
return self.find_median(nums2 + nums1)
median1 = self.find_median(nums1)
median2 = self.find_median(nums2)
if median1 < median2:
return self.findMedianSortedArrays(nums1[(smaller_len-1)//2:], nums2[:(len(nums2)) - (smaller_len-1)//2])
elif median1 == median2:
return median1
else:
return self.findMedianSortedArrays(nums2[(smaller_len-1)//2:], nums1[:(len(nums1)) - (smaller_len-1)//2])
## Base cases
if len(nums1) == 0:
return self.find_median(nums2)
if len(nums2) == 0:
return self.find_median(nums1)
if len(nums1) == 1:
bisect.insort(nums2, nums1[0])
return self.find_median(nums2)
if len(nums2) == 1:
bisect.insort(nums1, nums2[0])
return self.find_median(nums1)
if len(nums1) == 2:
bisect.insort(nums2, nums1[0])
bisect.insort(nums2, nums1[1])
return self.find_median(nums2)
if len(nums2) == 2:
bisect.insort(nums1, nums2[0])
bisect.insort(nums1, nums2[1])
return self.find_median(nums1)
#
def find_median(self,a):
if len(a) % 2 ==0:
return (a[len(a)//2]+a[len(a)//2-1]) / 2.0
else:
return a[len(a)//2]
a = Solution()
a.findMedianSortedArrays([1,2,3],[2,3,4,5,6,7,8,9])
if (len(nums1)+len(nums2)) % 2 = 0:
if (len(nums1)+len(nums2)) % 2 = 1:
def a(b):
if len(b) ==1:
print 'end'
return 0
print '\n\n\n'
print b, len(b)
a(b[:len(b)//2])
return 0
a([1,2,3,4,5,6,7,8])
if 2==1:
print 'ok'
elif 1==1:
print 'ok2'
else:
print 'no'