You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I created a zoo object from my precipitation file of 11 station and projected as utm zone 42, but following the instruction when i want to create a spatial object of the precipitation data i got the NA projection.
all other layers have the same utm zone 42 projection. but after running the Rfmerge i am getting this error.
setwd("D:\Time Series\chirps\station data and precipitation data")
ValparaisoPPts<-read.csv(file="data_ALLLL_copy.csv",header=TRUE, stringsAsFactors = FALSE)
dd<-seq(as.Date("2008-05-01"), as.Date("2019-12-31"), by = "day")
Error in sapply(x, fromDisk) & sapply(x, inMemory) :
operations are possible only for numeric, logical or complex types
In addition: Warning message:
In RFmerge.zoo(x = ValparaisoPPts, metadata = ValparaisoPPgis, cov = covariates, :
Invalid argument: 'cov' and 'mask' have different CRS. Please ensure they actually have the same CRS !
Also when i run this part of the code i get this error.
names(CHIRPS5km) <- ldates
Error in names<-(*tmp*, value = c(14000, 14001, 14002, 14003, 14004, :
incorrect number of layer names
i have daily precipitation data and monthly chirps data.
could you please instruct me how to resolve this part.
the code i run is attached .
Regards
The text was updated successfully, but these errors were encountered:
Respected Sir,
I created a zoo object from my precipitation file of 11 station and projected as utm zone 42, but following the instruction when i want to create a spatial object of the precipitation data i got the NA projection.
all other layers have the same utm zone 42 projection. but after running the Rfmerge i am getting this error.
setwd("D:\Time Series\chirps\station data and precipitation data")
ValparaisoPPts<-read.csv(file="data_ALLLL_copy.csv",header=TRUE, stringsAsFactors = FALSE)
dd<-seq(as.Date("2008-05-01"), as.Date("2019-12-31"), by = "day")
####################################################################
ldates <- hydroTSM::dip("2008-05-01", "2019-12-31")
ldates <- seq(from=as.Date("2008-05-01"), to=as.Date("2019-12-31"), by="day")
class(ValparaisoPPts)
names(CHIRPS5km) <- ldates
names(PERSIANNcdr5km) <- ldates
head(ValparaisoPPgis)
main <- paste("Daily precipitation for the station", ValparaisoPPgis$Code[1])
ylab <- "Precipitation [mm]"
x.ts <- ValparaisoPPts[,1]
hydroTSM::hydroplot(x.ts, pfreq="o", main=main, ylab= ylab)
plot(x.ts, main=main, ylab= ylab, col="blue")
grid()
chirps.total <- sum(CHIRPS5km, na.rm= FALSE)
persiann.total <- sum(PERSIANNcdr5km, na.rm= FALSE)
plot(chirps.total, main = "CHIRPSv2 [May - Aug] ", xlab = "Longitude", ylab = "Latitude")
plot(ValparaisoSHP[1], add=TRUE, col="transparent")
plot(persiann.total, main = "PERSIANN-CDR [May - Dec]", xlab = "Longitude", ylab = "Latitude")
plot(ValparaisoSHP[1], add=TRUE, col="transparent")
#################reading as zoo object
K101111<- zoo(x=ValparaisoPPts$K101111, order.by=dd)
K101112<- zoo(x=ValparaisoPPts$K101112, order.by=dd)
K101113<- zoo(x=ValparaisoPPts$K101113, order.by=dd)
K101114<- zoo(x=ValparaisoPPts$K101114, order.by=dd)
K101115<- zoo(x=ValparaisoPPts$K101115, order.by=dd)
K101116<- zoo(x=ValparaisoPPts$K101116, order.by=dd)
K101117<- zoo(x=ValparaisoPPts$K101117, order.by=dd)
K101118<- zoo(x=ValparaisoPPts$K101118, order.by=dd)
K101119<- zoo(x=ValparaisoPPts$K101119, order.by=dd)
K1011110<- zoo(x=ValparaisoPPts$K1011110, order.by=dd)
K1011111<- zoo(x=ValparaisoPPts$K1011111, order.by=dd)
ValparaisoPPts = cbind(K101111, K101112, K101113, K101114, K101115, K101116, K101117, K101118, K101119, K1011110, K1011111)
######################### Station csv which is Station location in studyarea ###
ValparaisoPPgis<-read.csv(file="kunduz_ST4.csv",header=TRUE, stringsAsFactors = FALSE)
names(ValparaisoPPgis)[1]<-c("Code")
str(ValparaisoPPgis)
class(ValparaisoPPgis)
ValparaisoSHP <- sf::st_transform(ValparaisoPPgis, crs=32642)
stations <- ValparaisoPPgis
( stations <- st_as_sf(stations, coords = c('lon', 'lat'), crs = 32642) )
stations.utm <- sf::st_transform(stations, crs=32642)
st.coords <- st_coordinates(stations.utm)
lon <- st.coords[, "X"]
lat <- st.coords[, "Y"]
ValparaisoPPgis.utm <- data.frame(Id=stations.utm[["Code"]], lon=lon, lat=lat)
ValparaisoPPgis<-ValparaisoPPgis.utm
crs(ValparaisoPPgis)
class(ValparaisoPPgis)
ValparaisoPPgis <- st_set_crs(ValparaisoPPgis, crs = +proj=longlat +datum=WGS84 +no_defs )
#################################################################
##################################Study area Border#############
setwd("D:\Time Series\chirps\studyarea")
ValparaisoSHP = st_read(dsn = "kunduz_WGS.shp",layer="kunduz_WGS")
ValparaisoSHP = st_read(dsn = ("kunduz_WGS.shp"))
ValparaisoSHP <- sf::st_transform(ValparaisoSHP, crs=32642)
ValparaisoSHP.utm <- sf::st_transform(ValparaisoSHP, crs=32642)
crs(ValparaisoSHP)
ValparaisoSHP<-ValparaisoSHP.utm
plot(ValparaisoSHP)
#######################################Chirps_v2_monthly data
setwd("D:\Time Series\chirps\chirsps2")
chirps<-list.files(path=getwd(), pattern="tif$") # 140 files
ch<-raster(chirps[1])
#crs(ch)<- +proj=utm +zone=42 +datum=WGS84 +units=m +no_defs
ch <- st_set_crs(ch, "+proj=utm +zone=42 +datum=WGS84 +units=m +no_defs")
crs(ch) <- CRS('+init=EPSG:32642')
crs(ch)
crs(CHIRPS5km)<- CRS('+init=EPSG:32642')
crs(CHIRPS5km)
######################################################
############### ersion Data set #############
setwd("D:\Time Series\chirps\cdr")
prsnncdr.fname<-list.files(path=getwd(), pattern=".tif$") # 140 files
cdr<-raster(prsnncdr.fname[1])
crs(cdr) <- CRS('+init=EPSG:32642')
crs(cdr)<- CRS('+init=EPSG:32642')
crs(cdr)
crs(PERSIANNcdr5km)<- CRS('+init=EPSG:32642')
crs(PERSIANNcdr5km)
#########################################################
############# Dem of study area ####################
setwd("D:\Time Series\chirps\dem")
dem.fname<-raster("Kunduz_Dem.tif")
dem<-raster(dem.fname)
crs(dem) <- CRS('+init=EPSG:32642')
crs(dem)
crs(ValparaisoDEM5km)<- CRS('+init=EPSG:32642')
crs(ValparaisoDEM5km)
plot(ValparaisoDEM5km, main="SRTM-v4", xlab="Longitude", ylab="Latitude", col=terrain.colors(255))
plot(ValparaisoSHP[1], add=TRUE, col="transparent")
plot(stations[1], add=TRUE, pch = 16, col="black")
#########################################################3
CHIRPS5km <- brick(ch)
PERSIANNcdr5km <- brick(cdr)
ValparaisoDEM5km <- raster(dem)
######################### resampling of all same spatial resolution ###
rsch<-resample(PERSIANNcdr5km,CHIRPS5km, method='bilinear')
rsdem<-resample(ValparaisoDEM5km ,CHIRPS5km,method='bilinear')
CHIRPS5km <- brick(CHIRPS5km)
ValparaisoDEM5km <- raster(rsdem)
PERSIANNcdr5km<-brick(rsch)
############################################################3
CHIRPS5km <- brick(CHIRPS5km)
PERSIANNcdr5km <- brick(rsch)
ValparaisoDEM5km <- raster(rsdem)
#####################################################projections####
################################################################
extent(ValparaisoDEM5km)
#crs(cdr)<- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +to wgs84=0,0,0"
extent(rsch)
##########################################################
covariates <- list(chirps=CHIRPS5km, persianncdr=PERSIANNcdr5km,
dem=ValparaisoDEM5km)
################################################################
onWin <- ( (R.version$os=="mingw32") | (R.version$os=="mingw64") )
ifelse(onWin, parallel <- "parallelWin", parallel <- "parallel")
par.nnodes <- min(parallel::detectCores()-1,5)
###################### RfMerge ###############################
rfmep <- RFmerge(x=ValparaisoPPts, metadata=ValparaisoPPgis, cov=covariates,
id="Id", lon="lon", lat = "lat", mask=ValparaisoSHP,
training=0.8, parallel=parallel, par.nnodes=par.nnodes)
Error in sapply(x, fromDisk) & sapply(x, inMemory) :
operations are possible only for numeric, logical or complex types
In addition: Warning message:
In RFmerge.zoo(x = ValparaisoPPts, metadata = ValparaisoPPgis, cov = covariates, :
Invalid argument: 'cov' and 'mask' have different CRS. Please ensure they actually have the same CRS !
Also when i run this part of the code i get this error.
names(CHIRPS5km) <- ldates
Error in
names<-
(*tmp*
, value = c(14000, 14001, 14002, 14003, 14004, :incorrect number of layer names
i have daily precipitation data and monthly chirps data.
could you please instruct me how to resolve this part.
the code i run is attached .
Regards
The text was updated successfully, but these errors were encountered: