-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
33 lines (26 loc) · 1.07 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import numpy as np
import matplotlib as mpl
from matplotlib.colors import ListedColormap
import torch
def save_model_with_required_grad(model, save_path):
tensors_to_save = []
# Traverse through model parameters and append tensors with require_grad=True to the list
for param_name, param_tensor in model.named_parameters():
if param_tensor.requires_grad:
tensors_to_save.append(param_tensor)
# Save the list of tensors
torch.save(tensors_to_save, save_path)
def load_model_with_required_grad(model, load_path):
# Load the list of tensors
tensors_to_load = torch.load(load_path)
# Traverse through model parameters and load tensors from the list
for param_name, param_tensor in model.named_parameters():
if param_tensor.requires_grad:
param_tensor.data = tensors_to_load.pop(0).data
newcolors = np.vstack(
(
np.flipud(mpl.colormaps['magma'](np.linspace(0, 1, 128))),
mpl.colormaps['magma'](np.linspace(0, 1, 128)),
)
)
newcmp = ListedColormap(newcolors, name='magma_cyclic')