-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
420 lines (348 loc) · 20.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import math
import logging
import torch
import numpy as np
from scipy.linalg import svdvals
RESNET18_FR_BLOCKS_IDX_MAP = {0:6,
1:18,
2:30,
3:48,
4:60} # num_fr_blocks:start layer index
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
def rank_estimation(epoch, net, adjust_rank_scale=None,
est_rank_tracker=None,
layers_to_factorize=None,
layer_stable_tracker=None,
args=None):
est_rank_list = []
ori_rank_list = []
if epoch == -1:
# at the very beginning, we calculate the rank adjustment ceof
adjust_rank_scale = []
if args.arch == "vgg19":
if args.mode == "pufferfish":
fullrank_layer_range = 54
elif args.mode == "lowrank":
fullrank_layer_range = 24
else:
fullrank_layer_range = 0
num_layers_remain = len(layer_stable_tracker) - sum(layer_stable_tracker)
# for this function we count the # of ranks s.t. \sum \sigma_i > frac * \sum \sigma_all
for item_index, (param_name, param) in enumerate(net.state_dict().items()):
if len(param.size()) == 4 and item_index not in range(0, fullrank_layer_range):
reshaped_param = param.reshape(param.shape[0], -1).detach()
rank = min(reshaped_param.size()[0], reshaped_param.size()[1])
ori_rank_list.append(rank)
#u, s, v = torch.svd(reshaped_param)
# see how fast this can be
s = torch.from_numpy(svdvals(reshaped_param.data.cpu().numpy()))
else:
continue
# stable rank
# https://nickhar.wordpress.com/2012/02/29/lecture-15-low-rank-approximation-of-matrices/
estimated_rank = int(torch.sum(s ** 2).item() / (torch.max(s).item() ** 2))
est_rank_list.append(estimated_rank)
if param_name in layers_to_factorize:
layer_index_in_factorized_layers = layers_to_factorize.index(param_name)
if epoch >= 0:
est_rank_tracker[layer_index_in_factorized_layers].append(estimated_rank)
if not layer_stable_tracker[layer_index_in_factorized_layers]: # only look at layers that's not stable
layer_stable_tracker[layer_index_in_factorized_layers] = layer_rank_stable_detector(epoch,
layer_est_ranks=est_rank_tracker[layer_index_in_factorized_layers],
num_layers_remain=num_layers_remain, arch=args.arch)
if epoch == -1:
adjust_rank_scale.append(rank/estimated_rank)
logger.info("#### Epoch: {}, Param index: {}, Param name: {}, Ori rank: {}, Est rank: {}".format(epoch, item_index,
param_name,
min(reshaped_param.size()[0], reshaped_param.size()[1]),
estimated_rank))
elif args.arch == "resnet18":
if args.mode == "pufferfish":
fullrank_layer_range = 18
elif args.mode == "lowrank":
fullrank_layer_range = 25
else:
fullrank_layer_range = 0
num_layers_remain = len(layer_stable_tracker) - sum(layer_stable_tracker)
for item_index, (param_name, param) in enumerate(net.state_dict().items()):
#if len(param.size()) == 4 and item_index not in range(0, 18) and ".shortcut." not in param_name:
#if len(param.size()) == 4 and item_index not in range(0, 13) and ".shortcut." not in param_name:
#if len(param.size()) == 4 and item_index not in range(0, 25) and ".shortcut." not in param_name:
#if len(param.size()) == 4 and item_index not in range(0, 48) and ".shortcut." not in param_name: # three full-rank blocks
if len(param.size()) == 4 and item_index not in range(0, fullrank_layer_range) and ".shortcut." not in param_name: # three full-rank blocks
# resize --> svd --> two layer
# shape_d1, shape_d2, shape_d3, shape_d4 = param.size()
# reshaped_param2 = param.view(shape_d1*shape_d2, shape_d3*shape_d4)
# u1, s1, v1 = torch.svd(reshaped_param2)
# estimated_rank1 = int(torch.sum(s1 ** 2).item() / (torch.max(s1).item() ** 2))
reshaped_param = param.reshape(param.size()[0], -1)
rank = min(reshaped_param.size()[0], reshaped_param.size()[1])
ori_rank_list.append(rank)
#u, s, v = torch.svd(reshaped_param)
s = torch.from_numpy(svdvals(reshaped_param.data.cpu().numpy()))
# vanilla stable rank
estimated_rank = int(torch.sum(s ** 2).item() / (torch.max(s).item() ** 2))
est_rank_list.append(estimated_rank)
if param_name in layers_to_factorize:
layer_index_in_factorized_layers = layers_to_factorize.index(param_name)
if epoch >= 0:
est_rank_tracker[layer_index_in_factorized_layers].append(estimated_rank)
if not layer_stable_tracker[layer_index_in_factorized_layers]: # only look at layers that's not stable
layer_stable_tracker[layer_index_in_factorized_layers] = layer_rank_stable_detector(epoch,
layer_est_ranks=est_rank_tracker[layer_index_in_factorized_layers],
num_layers_remain=num_layers_remain, arch=args.arch)
if epoch == -1:
adjust_rank_scale.append(rank/estimated_rank)
logger.info("#### Epoch: {}, Param index: {}, Param name: {}, Ori rank: {}, Est rank: {}".format(
epoch, item_index,
param_name,
min(reshaped_param.size()[0], reshaped_param.size()[1]),
estimated_rank
))
else:
raise NotImplementedError("Unsupported model arch ...")
if all(layer_stable_tracker):
switch_epoch = epoch + 1
else:
switch_epoch = args.epochs + 1
logger.info("@@@ Epoch: {}, Layer stable tracker: {}, switch epoch: {}".format(
epoch, layer_stable_tracker, switch_epoch
))
if epoch == -1:
return est_rank_list, adjust_rank_scale, switch_epoch
else:
adjusted_rank = []
for er, ars, ori_rank in zip(est_rank_list, adjust_rank_scale, ori_rank_list):
if args.rank_est_metric == "scaled-stable-rank":
if int(er * ars) > ori_rank:
adjusted_rank.append(ori_rank)
else:
adjusted_rank.append(int(math.ceil(er * ars)))
elif args.rank_est_metric == "vanilla-stable-rank":
if int(er * ars) > ori_rank:
adjusted_rank.append(ori_rank)
else:
adjusted_rank.append(er)
else:
raise NotImplementedError("Unsupported rank estimation metric.")
return adjusted_rank, switch_epoch
# helper function because otherwise non-empty strings
# evaluate as True
def bool_string(s):
if s not in {'False', 'True'}:
raise ValueError('Not a valid boolean string')
return s == 'True'
def layer_rank_stable_detector(epoch, layer_est_ranks, num_layers_remain, arch):
if arch in ("resnet18", "vgg19"):
__predefined_widow_size = 15
__base_thresold = 0.1
__threshold_scaler = 2.5
else:
__predefined_widow_size = 15
__base_thresold = 0.1
__threshold_scaler = 1.0
if num_layers_remain == 2:
__grad_threshold = __base_thresold * __threshold_scaler
elif num_layers_remain == 1:
__grad_threshold = __base_thresold * (__threshold_scaler * 2)
else:
__grad_threshold = __base_thresold
if epoch < __predefined_widow_size:
return False
else:
#smooth_est_ranks = moving_average(layer_est_ranks, w=__predefined_widow_size)
smooth_est_ranks = exponential_moving_average(layer_est_ranks, points=__predefined_widow_size)
grad_smooth_est_ranks = np.absolute(np.gradient(smooth_est_ranks))
logger.info("############## grad_smooth_est_ranks: {}, np.mean(grad_smooth_est_ranks[-11:]): {:.4f}, layers remain: {}, threshold: {}".format(
grad_smooth_est_ranks,
np.mean(grad_smooth_est_ranks[-11:]), num_layers_remain, __grad_threshold))
return np.mean(grad_smooth_est_ranks[-11:]) <= __grad_threshold
def decompose_weights(model, low_rank_model, rank_list, rank_ratio, args):
# SVD version
reconstructed_aggregator = []
if args.arch == "vgg19":
layer_counter = 0
if args.mode == "pufferfish":
fullrank_layer_range = 54
else:
fullrank_layer_range = 24
for item_index, (param_name, param) in enumerate(model.state_dict().items()):
if len(param.size()) == 4 and item_index not in range(0, fullrank_layer_range):
# resize --> svd --> two layer
param_reshaped = param.view(param.size()[0], -1)
rank = min(param_reshaped.size()[0], param_reshaped.size()[1])
u, s, v = torch.svd(param_reshaped)
if args.mode == "lowrank":
sliced_rank = rank_list[layer_counter]
elif args.mode in ("baseline", "pufferfish"):
sliced_rank = int(rank/rank_ratio)
else:
raise NotImplementedError("Unsupported mode ...")
#u_weight = u * torch.sqrt(s) # alternative implementation: u_weight_alt = torch.mm(u, torch.diag(torch.sqrt(s)))
#v_weight = torch.sqrt(s) * v # alternative implementation: v_weight_alt = torch.mm(torch.diag(torch.sqrt(s)), v.t())
# alternative implementation
u_weight = torch.matmul(u, torch.diag(torch.sqrt(s)))
v_weight = torch.matmul(torch.diag(torch.sqrt(s)), v.t()).t()
#print("layer indeix: {}, dist u u_alt:{}, dist v v_alt: {}".format(item_index, torch.dist(u_weight, u_weight_alt), torch.dist(v_weight.t(), v_weight_alt)))
#print("layer indeix: {}, dist u u_alt:{}, dist v v_alt: {}".format(item_index, torch.equal(u_weight, u_weight_alt), torch.equal(v_weight.t(), v_weight_alt)))
u_weight_sliced, v_weight_sliced = u_weight[:, 0:sliced_rank], v_weight[:, 0:sliced_rank]
u_weight_sliced_shape, v_weight_sliced_shape = u_weight_sliced.size(), v_weight_sliced.size()
model_weight_v = u_weight_sliced.view(u_weight_sliced_shape[0],
u_weight_sliced_shape[1], 1, 1)
model_weight_u = v_weight_sliced.t().view(v_weight_sliced_shape[1],
param.size()[1],
param.size()[2],
param.size()[3])
reconstructed_aggregator.append(model_weight_u)
reconstructed_aggregator.append(model_weight_v)
layer_counter += 1
else:
reconstructed_aggregator.append(param)
model_counter = 0
reload_state_dict = {}
for item_index, (param_name, param) in enumerate(low_rank_model.state_dict().items()):
# print("#### {}, {}, recons agg: {}, param: {}".format(item_index, param_name,
# reconstructed_aggregator[model_counter].size(),
# param.size()))
if "batch_norm" in param_name and "_u" in param_name:
reload_state_dict[param_name] = param
else:
assert (reconstructed_aggregator[model_counter].size() == param.size())
reload_state_dict[param_name] = reconstructed_aggregator[model_counter]
model_counter += 1
elif args.arch == "resnet18":
layer_counter = 0
if args.mode == "pufferfish":
fullrank_layer_range = 18
elif args.mode == "baseline":
fullrank_layer_range = RESNET18_FR_BLOCKS_IDX_MAP[0]
elif args.mode == "lowrank":
fullrank_layer_range = 25
else:
raise NotImplementedError("Unsupported training mode ...")
for item_index, (param_name, param) in enumerate(model.state_dict().items()):
#if len(param.size()) == 4 and item_index not in range(0, 18) and ".shortcut." not in param_name:
#if len(param.size()) == 4 and item_index not in range(0, 13) and ".shortcut." not in param_name:
#if len(param.size()) == 4 and item_index not in range(0, 25) and ".shortcut." not in param_name: # two full-rank blocks
#if len(param.size()) == 4 and item_index not in range(0, 48) and ".shortcut." not in param_name: # three full-rank blocks
if len(param.size()) == 4 and item_index not in range(0, fullrank_layer_range) and ".shortcut." not in param_name: # three full-rank blocks
#if len(param.size()) == 4 and item_index not in range(0, 60) and ".shortcut." not in param_name:
# resize --> svd --> two layer
param_reshaped = param.view(param.size()[0], -1)
rank = min(param_reshaped.size()[0], param_reshaped.size()[1])
u, s, v = torch.svd(param_reshaped)
if args.mode == "lowrank":
sliced_rank = rank_list[layer_counter]
elif args.mode in ("baseline", "pufferfish"):
sliced_rank = int(rank/rank_ratio)
else:
raise NotImplementedError("Unsupported mode ...")
#u_weight = u * torch.sqrt(s)
#v_weight = torch.sqrt(s) * v
u_weight = torch.matmul(u, torch.diag(torch.sqrt(s)))
#v_weight = torch.mm(torch.diag(torch.sqrt(s)), v.t()).t()
v_weight = torch.matmul(torch.diag(torch.sqrt(s)), v.t()).t()
u_weight_sliced, v_weight_sliced = u_weight[:, 0:sliced_rank], v_weight[:, 0:sliced_rank]
u_weight_sliced_shape, v_weight_sliced_shape = u_weight_sliced.size(), v_weight_sliced.size()
model_weight_v = u_weight_sliced.view(u_weight_sliced_shape[0],
u_weight_sliced_shape[1], 1, 1)
model_weight_u = v_weight_sliced.t().view(v_weight_sliced_shape[1],
param.size()[1],
param.size()[2],
param.size()[3])
reconstructed_aggregator.append(model_weight_u)
reconstructed_aggregator.append(model_weight_v)
layer_counter += 1
else:
reconstructed_aggregator.append(param)
model_counter = 0
reload_state_dict = {}
for item_index, (param_name, param) in enumerate(low_rank_model.state_dict().items()):
#print("#### {}, {}, recons agg: {}, param: {}".format(item_index, param_name,
# reconstructed_aggregator[model_counter].size(),
# param.size()))
if ".bn1_u." in param_name or ".bn2_u." in param_name:
reload_state_dict[param_name] = param
else:
assert (reconstructed_aggregator[model_counter].size() == param.size())
reload_state_dict[param_name] = reconstructed_aggregator[model_counter]
model_counter += 1
else:
raise NotImplementedError("Unsupported model arch ...")
low_rank_model.load_state_dict(reload_state_dict)
return low_rank_model
def add_weight_decay(model, weight_decay=1e-5, skip_list=()):
decay = []
no_decay = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue
if len(param.shape) == 1 or name in skip_list:
no_decay.append(param)
else:
decay.append(param)
return [
{'params': no_decay, 'weight_decay': 0.},
{'params': decay, 'weight_decay': weight_decay}]
def apply_fd(model, weight_decay=1e-5, factor_list=()):
v_treated_flag =False
for param_name, param in model.named_parameters():
if param_name in factor_list:
if "_u.weight" in param_name:
v_name = param_name.rstrip(".weight").rstrip("_u") + "_v.weight"
v_weight, v_weight_shape = model.state_dict()[v_name], model.state_dict()[v_name].size() # size: (#out, r, 1, 1)
u_weight, u_weight_shape = param, param.size() # size (r, #in, k, k)
u_weight = u_weight.data.reshape(u_weight_shape[0], u_weight_shape[1]*u_weight_shape[2]*u_weight_shape[3])
v_weight = v_weight.data.reshape(v_weight_shape[0], v_weight_shape[1])
vu_res = torch.matmul(v_weight, u_weight)
frob_grad_u = torch.matmul(v_weight.T, vu_res
).reshape(u_weight_shape) # size (r, #in * k * k)
param.grad += weight_decay * frob_grad_u
#v_name = param_name.rstrip(".weight").rstrip("_u") + "_v.weight"
#v_weight, v_weight_shape = model.state_dict()[v_name], model.state_dict()[v_name].size() # size: (#out, r, 1, 1)
#u_weight, u_weight_shape = param, param.size() # size (r, #in, k, k)
#u_weight = u_weight.reshape(u_weight_shape[0], u_weight_shape[1]*u_weight_shape[2]*u_weight_shape[3])
#v_weight = v_weight.reshape(v_weight_shape[0], v_weight_shape[1])
#frob_grad_u = torch.chain_matmul(v_weight.T, v_weight, u_weight
# ).reshape(u_weight_shape) # size (r, #in * k * k)
#param.grad += weight_decay * frob_grad_u
elif "_v.weight" in param_name:
#u_name = param_name.rstrip(".weight").rstrip("_v") + "_u.weight"
#u_weight, u_weight_shape = model.state_dict()[u_name], model.state_dict()[u_name].size() # size: (r, #in, k, k)
#u_weight = u_weight.reshape(u_weight_shape[0], u_weight_shape[1]*u_weight_shape[2]*u_weight_shape[3])
#v_weight, v_weight_shape = param, param.size() # size (#out, r, 1, 1)
#v_weight = v_weight.reshape(v_weight_shape[0], v_weight_shape[1])
frob_grad_v = torch.matmul(vu_res, u_weight.T).reshape(v_weight_shape) # size (#out, r * 1 * 1)
#frob_grad_v = torch.matmul(v_weight, torch.matmul(u_weight, u_weight.T)
# ).reshape(v_weight_shape) # size (#out, r * 1 * 1)
param.grad += weight_decay * frob_grad_v
# we track the norm of the model weights:
def norm_calculator(model):
model_norm = 0
for param_index, param in enumerate(model.parameters()):
model_norm += torch.norm(param) ** 2
return torch.sqrt(model_norm).item()
def param_counter(model):
num_params = 0
for param_index, (param_name, param) in enumerate(model.named_parameters()):
num_params += param.numel()
return num_params
def exponential_moving_average(signal, points, smoothing=2):
"""
from: https://leofinance.io/@chasmic-cosm/calculating-the-exponential-moving-average-in-python
Calculate the N-point exponential moving average of a signal
Inputs:
signal: numpy array - A sequence of price points in time
points: int - The size of the moving average
smoothing: float - The smoothing factor
Outputs:
ma: numpy array - The moving average at each point in the signal
"""
weight = smoothing / (points + 1)
ema = np.zeros(len(signal))
ema[0] = signal[0]
for i in range(1, len(signal)):
ema[i] = (signal[i] * weight) + (ema[i - 1] * (1 - weight))
return ema