-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsofa_dp.py
258 lines (229 loc) · 11.9 KB
/
sofa_dp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import os
import pandas as pd
import numpy as np
import pickle
import api.util
from sklearn.preprocessing import LabelEncoder,OneHotEncoder,MinMaxScaler
class SofaDataProvider:
def __init__(self, include=[],exclude=[], load=False, today=False):
self.LOCAL_TZ = 'Asia/Almaty'
self.SERVER_TZ = 'UTC'
self.DATA_PATH='data/sofa/'
self.PREREQUISITES_PATH='prerequisites/sofa/'
self.INCLUDE=include
self.EXCLUDE=exclude
self.COL_CAT=[]
self.COL_NUM=[]
self.COL_LBL=[]
self.COL_INF=[]
self.TODAY=today
self.LOAD=True if today else load
def _load_prerequisites(self,name):
with open(os.path.join(self.PREREQUISITES_PATH, name),'rb') as f:
encoder = pickle.load(f)
return encoder
def _save_prerequisite(self, name, data):
os.makedirs(self.PREREQUISITES_PATH, mode=0o777, exist_ok=True)
with open(os.path.join(self.PREREQUISITES_PATH, name), mode='wb') as f:
pickle.dump(data, f)
def _ff(self, columns):
if len(self.INCLUDE)>0:
return [x for x in columns if x in self.INCLUDE]
else:
return [x for x in columns if x not in self.EXCLUDE]
def _encode_teams(self, df):
teams_name=self.DATA_PATH+'teams.csv'
teams_saved=pd.read_csv(teams_name, index_col=None)
teams=pd.concat([pd.DataFrame(df['t1'].unique(), columns=['name']),pd.DataFrame(df['t2'].unique(), columns=['name'])]).drop_duplicates()
teams_new=teams[~teams.name.isin(teams_saved.name)]
if not teams_new.empty:
print('New teams!')
id=teams_saved.id.max()+1
#id=0
teams_list=[]
for row in teams_new.itertuples():
if len(row.name)>1:
teams_list.append({'name':row.name, 'id':id})
id+=1
#break
teams_saved=pd.concat([teams_saved,pd.DataFrame(teams_list)])
teams_saved.to_csv(teams_name, index=False)
teams_saved.columns=['t1','tid1']
df=df.merge(teams_saved, on='t1', how='left')
teams_saved.columns=['t2','tid2']
df=df.merge(teams_saved, on='t2', how='left')
return df
def _encode(self, enctype, features, outs, df):
if (len(self.INCLUDE)>0 and outs[0] in self.INCLUDE) or outs[0] in self.EXCLUDE:
return df
name='_'.join(features)
if self.LOAD:
encoder=self._load_prerequisites(f'{enctype}_{name}')
else:
if enctype=='sc':
encoder = MinMaxScaler()
elif enctype=='le':
encoder = LabelEncoder()
elif enctype=='ohe':
encoder = OneHotEncoder()
if len(features)==1:
encoder.fit(df[features].values)
else:
df1=pd.DataFrame(df[features[0]].unique(), columns=[name])
df2=pd.DataFrame(df[features[1]].unique(), columns=[name])
if enctype=='sc':
encoder.fit(pd.concat([df1,df2], axis=1)[name])
else:
encoder.fit(pd.concat([df1,df2])[name])
self._save_prerequisite(f'{enctype}_{name}', encoder)
if enctype=='ohe':
return encoder.transform(df[features].values).toarray()
if len(features)==1:
df[outs[0]] = encoder.transform(df[features].values)
else:
if enctype=='sc':
df[outs] = encoder.transform(df[features])
else:
df[outs[0]] = encoder.transform(df[[features[0]]])
df[outs[1]] = encoder.transform(df[[features[1]]])
return df
def _provide_statistics(self, df_src, period='ALL'):
df=pd.read_csv(self.DATA_PATH+'statistics.csv', index_col=False)
#nulls=pd.DataFrame(df.isna().sum(), columns=['n'])
#drop_cols=['Blocked shots', 'Duels won', 'Shots inside box', 'Shots outside box', 'Passes', 'Accurate passes', 'Aerials won', 'Big chances', 'Clearances', 'Big chances missed', 'Long balls', 'Dribbles', 'Crosses', 'Interceptions', 'Tackles', 'Possession lost', 'Hit woodwork', 'Red cards', 'Counter attacks', 'Counter attack shots', 'Counter attack goals', 'Total shots']
#cols_to_keep=[x for x in df.columns if not x in drop_cols]
cols_to_keep=['mid', 'period', 'ishome', 'Ball possession', 'Shots on target', 'Shots off target', 'Corner kicks', 'Offsides', 'Fouls', 'Yellow cards', 'Goalkeeper saves']
df=df[cols_to_keep]
df=df.reset_index(drop=True)
df['precision']=np.where(df['Shots on target']>0, df['Shots off target']/df['Shots on target'], 0)
for col in df.columns[4:]:
df=self._encode('sc', [col], [col], df)
#scaler = MinMaxScaler()
#df_scaled = scaler.fit_transform(df[df.columns[4:]])
#df=pd.concat([df[df.columns[:4]],pd.DataFrame(df_scaled, columns=df.columns[4:])], axis=1)
cols_stats=['possession', 'shont', 'shofft', 'corners', 'offsides', 'fouls', 'cards', 'gksaves','precision']
df1=df[df['ishome']==1].reset_index(drop=True).sort_values(by='mid')
df1=df1.drop(columns=['period', 'ishome'])
df1.columns=['mid']+[x+'1' for x in cols_stats]
df0=df[df['ishome']==0].reset_index(drop=True).sort_values(by='mid')
df0=df0.drop(columns=['mid','period', 'ishome'])
df0.columns=[x+'2' for x in cols_stats]
df=pd.concat([df1,df0], axis=1)
df=df.dropna()
df['possession1']=df['possession1'].str[:-1].astype(float)/100
df['possession2']=df['possession2'].str[:-1].astype(float)/100
df=df.drop_duplicates()
df_src=df_src.merge(df, on='mid', how='left')
return df_src
def _provide_lineups(self):
df=pd.read_csv(self.DATA_PATH+'lineups.csv', index_col=False)
return df
def _provide_formations(self, df_src):
self.COL_CAT+=['home_formation','away_formation']
if self.TODAY:
df=pd.read_csv(self.DATA_PATH+'formations_today.csv', index_col=False)
else:
df=pd.read_csv(self.DATA_PATH+'formations.csv', index_col=False)
df=self._encode('le', ['formation_h','formation_a'], ['home_formation','away_formation'], df)
df_src=df_src.merge(df, on='mid', how='left')
if not self.TODAY:
df_src=df_src.dropna(subset=['home_formation'])
df_src['home_formation'] = df_src['home_formation'].astype(int)
df_src['away_formation'] = df_src['away_formation'].astype(int)
return df_src
def _provide_incidents(self):
df=pd.read_csv(self.DATA_PATH+'incidents.csv', index_col=False)
return df
def _provide_graph(self, df_src):
df_graph=pd.read_csv(self.DATA_PATH+'graph.csv', index_col=False)
df_graph=df_graph.loc[(df_graph['minute']>0) & (df_graph['minute']<91)]
df_graph.columns=['mid','time','graph1']
df_graph=df_graph.drop_duplicates()
df_graph=df_graph.groupby('mid').graph1.sum().reset_index()
df_graph['graph2']=df_graph['graph1']*-1
df_graph=self._encode('sc', ['graph1','graph2'], ['graph1','graph2'], df_graph)
df_src=df_src.merge(df_graph, on='mid', how='left')
return df_src
def _provide_votes(self, df_src):
self.COL_NUM+=['vote_home','vote_draw','vote_away']
self.COL_CAT+=['pop_r']
if self.TODAY:
df=pd.read_csv(self.DATA_PATH+'votes_today.csv', index_col=False)
else:
df=pd.read_csv(self.DATA_PATH+'votes.csv', index_col=False)
df=df.dropna()
df['votes']=df[['vote1','vote2','voteX']].sum(axis=1)
df['vote_home']=df['vote1']/df['votes']
df['vote_draw']=df['voteX']/df['votes']
df['vote_away']=df['vote2']/df['votes']
df=df[['mid','vote_home','vote_draw','vote_away','votes']]
df_src=df_src.merge(df, on='mid', how='left')
if not self.TODAY:
df_src=df_src.dropna(subset=['votes'])
df_src['y']=df_src.ds.dt.year
name='r_votes'
if self.LOAD:
intervals=self._load_prerequisites(name)
else:
intervals={}
for y in range(2015,2022):
_,intervals[y]=pd.qcut(df_src[df_src.y==y].votes, 5, retbins=True, labels=False)
self._save_prerequisite(name, intervals)
for key in intervals:
df_src.loc[df_src.y==key, 'pop_r']=pd.cut(df_src[df_src.y==key]['votes'], bins=intervals[key], labels=False, include_lowest=True)
#df_src.pop_r=df_src.pop_r.astype(int)
if not self.TODAY:
df_src.drop(columns=['votes','y'], inplace=True)
return df_src
def _provide_matches(self):
info_colums=[ 'mid', 'ds', 'country', 'liga','tid1','tid2', 't1', 'homeScoreHT', 'sc1', 't2', 'awayScoreHT','sc2', 'winner']
cat_colums=['country_id', 'round']
label_colums=['winner']
self.COL_INF+=info_colums
self.COL_CAT+=cat_colums
self.COL_LBL+=label_colums
cols=np.unique(info_colums+cat_colums+label_colums)
chars0=['ó','é','í','ş','ã','İ','ğ','ç','ü','É','â','Ç','õ','ł','ą','Ś','ø','ń','ț','å','Å','ß', 'æ', 'Ž','ş', 'ə','Ö','ı','á','î','ñ','ö','ź','ú','è','Ł','ę','Ş','ä','ë','ô','ș','ū','č','Š','Þ','ė','Ä','ă','ì','š','i','ć','ň','ž','ư','ơ','ê','à','ð','ő','Ü','ý','ď','Á','ř','Č','Ú']
chars1=['o','e','i','s','a','I','g','c','u','E','a','C','o','l','a','s','o','n','t','a','A','ss','ae','Z','sh','a','O','i','a','i','n','o','z','u','e','L','e','S','a','e','o','s','u','c','S','P','e','A','a','i','s','i','c','n','z','u','o','e','a','d','o','U','y','d','A','r','C','U']
dicUnicode2En=dict(zip(chars0, chars1))
df_countries=pd.read_csv(self.DATA_PATH+'countries.csv', index_col=None)
df_countries['Name']=df_countries['Name'].str.lower()
df_countries.columns=['country','countryCode']
if self.TODAY:
df=pd.read_csv(self.DATA_PATH+'matches_today.csv', index_col=False)
df['winnerCode']=0
else:
df=pd.read_csv(self.DATA_PATH+'matches_done.csv', index_col=False)
df['round']=df['round'].fillna(0).astype(int)
df['ts']=pd.to_datetime(df['ts'])
df['winner']=df['winnerCode'].apply(lambda x: 'home' if x==1.0 else 'away' if x==2.0 else 'draw')
df = df.rename(columns={'id': 'mid','tournament': 'liga','ts': 'ds','homeScoreFT': 'sc1','awayScoreFT': 'sc2'})
df=df.merge(df_countries, on='country', how='left')
df.loc[df['country']=='england','countryCode']='GB'
df.loc[df['country']=='scotland','countryCode']='GB'
df.loc[df['country']=='czech-republic','countryCode']='CZ'
df.loc[df['country']=='russia','countryCode']='RU'
df.loc[df['country']=='usa','countryCode']='US'
df['t1']=df['homeTeam'].replace(dicUnicode2En, regex=True).replace('[^a-zA-Z0-9 ]', '', regex=True).str.lower()
df['t2']=df['awayTeam'].replace(dicUnicode2En, regex=True).replace('[^a-zA-Z0-9 ]', '', regex=True).str.lower()
df.loc[df['t1']=='','t1']='AEK Athens'
df.loc[df['t2']=='','t2']='AEK Athens'
df=self._encode('le', ['country'], ['country_id'], df)
df=self._encode_teams(df)
return df[cols]
def _load_data(self):
df=self._provide_matches()
df=self._provide_formations(df)
df=self._provide_votes(df)
if not self.TODAY:
df=self._provide_graph(df)
df=self._provide_statistics(df)
return df
def provide_data(self):
df=self._load_data()
data=df[self._ff(self.COL_NUM)].values
for col in self._ff(self.COL_CAT):
data=np.hstack([data,self._encode('ohe', [col], [col], df)])
labels=self._encode('ohe', self.COL_LBL, self.COL_LBL, df)
info=df[self.COL_INF]
return data, labels, info, df