-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
392 lines (327 loc) · 18.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import os,json,random
import pandas as pd
import numpy as np
import torch
from torch import nn, optim
from torch.utils.data import DataLoader, WeightedRandomSampler
from model.EcgClassifier import EcgClassifer
from model.Generator import Ecgedit
from model.BaseModel import VQSeparator
from dataset.PTBXLdataset import PTBXLOridataset as ECGDataset
from dataset.PTBXLdataset import collect_fn_ori, PTBXLTestClsdataset
import utils
from torch.utils.tensorboard import SummaryWriter
import time
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.manual_seed(41)
torch.cuda.manual_seed(41)
def load_matching_parameters(model, pretrained_state_dict):
model_dict = model.state_dict()
new_state_dict = {}
for name, param in pretrained_state_dict.items():
if name in model_dict and param.shape == model_dict[name].shape:
new_state_dict[name] = param
model.load_state_dict(new_state_dict, strict=False)
def print_log(text, path):
print(text)
with open(os.path.join(path, 'log.txt'), 'a') as f:
f.write(text+"\n")
def save_ckpt(g_state, d_state, f_state,is_best, model_save_dir):
torch.save(g_state, os.path.join(model_save_dir, 'current.pth'))
torch.save(d_state, os.path.join(model_save_dir, 'current_d.pth'))
torch.save(f_state, os.path.join(model_save_dir, 'current_f.pth'))
if is_best:
torch.save(g_state, os.path.join(model_save_dir, 'best.pth'))
torch.save(d_state, os.path.join(model_save_dir, 'best_d.pth'))
torch.save(f_state, os.path.join(model_save_dir, 'best_f.pth'))
def reset_grad(d_optimizer, g_optimizer):
d_optimizer.zero_grad()
g_optimizer.zero_grad()
def train_epoch(Editor, classifier, epoch, logger, criterion, train_dataloader, model_save_dir, show_interval=10):
Editor.gen.train()
Editor.dis.train()
Editor.disease_model.train()
f1_meter, acc_meter, loss_meter, it_count = 0, 0, 0, 0
f1, acc = 0, 0
for idx, batch in enumerate(train_dataloader):
ab_ecg = batch[0].to(device).float()
ab_descrip = batch[1]
target = batch[2].to(device)
normal_ecg = batch[3].to(device).float()
norm_descrip = batch[4]
batch_size = ab_ecg.shape[0]
d_loss, d_ori_loss, d_cls_loss = Editor.optimize_discriminator(ab_ecg, ab_descrip, normal_ecg, norm_descrip, 10, 1)
g_loss, g_f_loss, g_rec_loss, g_cls_loss, g_q_loss, indices = Editor.optimize_generator(ab_ecg, ab_descrip, normal_ecg, norm_descrip, 10, 1)
logger.add_scalar('D_loss', d_loss, global_step=idx+(epoch-1)*len(train_dataloader))
logger.add_scalar('D_cls_loss', d_cls_loss, global_step=idx+(epoch-1)*len(train_dataloader))
logger.add_scalar('D_ori_loss', d_ori_loss, global_step=idx+(epoch-1)*len(train_dataloader))
logger.add_scalar('G_loss', g_loss, global_step=idx+(epoch-1)*len(train_dataloader))
logger.add_scalar('G_gan_loss', g_loss, global_step=idx+(epoch-1)*len(train_dataloader))
logger.add_scalar('G_cls_loss', g_cls_loss, global_step=idx+(epoch-1)*len(train_dataloader))
logger.add_scalar('G_rec_loss', g_rec_loss, global_step=idx+(epoch-1)*len(train_dataloader))
logger.add_scalar('G_ori_loss', g_f_loss, global_step=idx+(epoch-1)*len(train_dataloader))
logger.add_scalar('G_q_loss', g_q_loss, global_step=idx+(epoch-1)*len(train_dataloader))
if (epoch>50 and idx % 30 == 0) or (epoch == 1 and idx % 200 == 0):
disease, const_disease, q_loss_s, prefix_s, mask = Editor.disease_model(ab_ecg[:, :12], ab_ecg[:, 12:], ab_descrip)
disease_r, const_r, q_loss_r, prefix_r,_ = Editor.disease_model(normal_ecg[:, :12], normal_ecg[:, 12:], norm_descrip)
disease = disease.detach()
const_r = const_r.detach()
ecg_edit = Editor.gen(disease, 10, 1, const_input=const_r).detach()
mask = mask.detach()
output = classifier(ecg_edit)
loss_classifier = criterion[1](output, target)
loss = loss_classifier.item()
logger.add_image('Mask', mask[0].unsqueeze(0), global_step=idx+(epoch-1)*len(train_dataloader), dataformats='CHW')
logger.add_scalar('Cls_loss', loss_classifier.item(), global_step=idx+(epoch-1)*len(train_dataloader))
it_count += 1
f1, acc = utils.calc_f1_acc_one_hot(target, torch.sigmoid(output))
f1_meter += f1
acc_meter += acc
loss_meter += loss
if idx != 0 and idx % show_interval == 0:
print_log(f"Indices {indices}", model_save_dir) # <=1 ==>collaspe
assert indices > 1, "Indices <= 1, COLLASPE!"
print_log("Iter %d,G_loss:%.3e, D_loss:%.3e f1:%.3f acc:%.3f" % (idx, g_loss, d_loss, f1, acc), model_save_dir)
print_log(f"G_q_loss:{g_q_loss} G_cls_loss:{g_cls_loss}, G_ori_loss:{g_f_loss}, G_rec_loss:{g_rec_loss}", model_save_dir)
print_log(f"D_cls_loss:{d_cls_loss}, D_ori_loss:{d_ori_loss}", model_save_dir)
return loss_meter / len(train_dataloader), f1_meter / (it_count+1e-6), acc_meter / (it_count+1e-6)
def val_epoch(Editor, classifier, epoch, logger, criterion, val_dataloader, threshold=0.5, save_dir='./'):
Editor.gen.eval()
Editor.dis.eval()
f1_meter, acc_meter, loss_meter, it_count = 0, 0, 0, 0
with torch.no_grad():
for idx, batch in enumerate(val_dataloader):
ab_ecg = batch[0].to(device).float()
ab_descrip = batch[1]
target = batch[2].to(device)
normal_ecg = batch[3].to(device).float()
normal_type = batch[5].to(device)
norm_descrip = batch[4]
batch_size = ab_ecg.shape[0]
# forward
disease, const_disease, q_loss_s, prefix_s, mask = Editor.disease_model(ab_ecg[:, :12], ab_ecg[:, 12:], ab_descrip)
disease_r, const_r, q_loss_r, prefix_r,_ = Editor.disease_model(normal_ecg[:, :12], normal_ecg[:, 12:], norm_descrip)
disease = disease.detach()
const_r = const_r.detach()
ecg_edit = Editor.gen(disease, 10, 1, const_input=const_r)
ecg_edit = ecg_edit.detach()
mask = mask.detach()
output = classifier(ecg_edit)
loss = criterion[1](output, target)
logger.add_scalar('Val_Cls_loss', loss.item(), global_step=idx+(epoch-1)*len(val_dataloader))
loss_meter += loss.item()
it_count += 1
output = torch.sigmoid(output)
f1, acc = utils.calc_f1_acc_one_hot(target, output, threshold)
f1_meter += f1
acc_meter += acc
if epoch % 50 == 0 and epoch > 10:
utils.save_ecg_image(ecg_edit[:5], f'{save_dir}/epoch_ecg_{epoch}/')
utils.save_ecg_image(normal_ecg[:5, :12], f'{save_dir}/epoch_ecg_{epoch}_input/')
return loss_meter / it_count, f1_meter / it_count, acc_meter / it_count
def GenerateECG(Editor, classifier, logger, test_loader, val_dataloader, threshold=0.5, save_dir='./'):
Editor.gen.eval()
Editor.disease_model.eval()
f1_meter, acc_meter, loss_meter, it_count = 0, 0, 0, 0
gen_ecg = []
gen_cls = []
gen_id = []
gen_des = []
classes = ['HYP', 'MI', 'CD', 'STTC', 'NORM']
cls_map = {classes[id]: id for id in range(len(classes))}
weight = {classes[id]: 0 for id in range(len(classes))}
p_num = {}
for ind, batch_norm in enumerate(test_loader):
ecg_ori = batch_norm[0].to(device).float()
ori_cls = batch_norm[1].to(device)
ori_des = batch_norm[3]
patient_id = batch_norm[2].to(device)
ori_cls = ori_cls.repeat(128)
patient_id = patient_id.repeat(128)
with torch.no_grad():
print(f"Paient_id {patient_id}")
num_per = 0
for idx, batch in enumerate(val_dataloader): # choose some item for generate ecg
if num_per >= 50:
break
ab_ecg = batch[0].to(device).float()
ab_descrip = batch[1]
target = batch[2].to(device)
choose_item = target.cpu().numpy()!=4
choose_item = np.argwhere(choose_item == True).squeeze(1)
print(choose_item)
if num_per+len(choose_item) > 50:
choose_item = random.sample(list(choose_item), 50-num_per)
num_per+=len(choose_item)
choose_item = torch.tensor(choose_item, device=ab_ecg.device).long()
normal_ecg = ecg_ori.repeat(ab_ecg.shape[0], 1, 1)
normal_des = list(ori_des)*ab_ecg.shape[0]
# forward
disease, const_disease, q_loss_s, prefix_s, mask = Editor.disease_model(ab_ecg[:, :12], ab_ecg[:, 12:], ab_descrip)
disease_r, const_r, q_loss_r, prefix_r,_ = Editor.disease_model(normal_ecg[:, :12], normal_ecg[:, 12:], normal_des)
disease = disease.detach().to(device)
const_r = const_r.detach().to(device)
ecg_edit = Editor.gen(disease, 10, 1, const_input=const_r)
gen_ecg.append(ecg_edit[choose_item].cpu().detach().numpy())
gen_cls.append(target[choose_item].cpu().detach().numpy())
gen_id.append(patient_id[choose_item].cpu().numpy())
gen_des.extend([ab_descrip[i] for i in choose_item])
output = classifier(ecg_edit)
it_count += 1
output = torch.sigmoid(output)
f1, acc = utils.calc_f1_acc_one_hot(target, output, threshold)
f1_meter += f1
acc_meter += acc
for i in target.cpu().detach().numpy():
weight[classes[i]] += 1
utils.save_ecg_image(ecg_edit[:10], f'{save_dir}/')
utils.save_ecg_image(ab_ecg[:10], f'{save_dir}/ab/')
ecg = np.concatenate(gen_ecg, axis=0)
clss = np.concatenate(gen_cls, axis=0)
id = np.concatenate(gen_id, axis=0)
np.save(save_dir+'/ecg.npy', ecg)
df = pd.DataFrame({'patient_id': id, 'detail_superclass': clss, 'report': gen_des})
df.to_csv(save_dir+'/ecg.csv')
return loss_meter / it_count, f1_meter / it_count, acc_meter / it_count
def train(args):
model_save_dir = os.path.join(args.work_dir, args.model_name, time.strftime("%Y%m%d%H%M"))
if not os.path.exists(model_save_dir):
os.makedirs(model_save_dir)
with open(model_save_dir+"/config.json", mode="w") as f:
json.dump(args.__dict__, f, indent=4)
print_log(f"{args.model_name}: {args.detail}", model_save_dir)
logger = SummaryWriter(log_dir=model_save_dir, flush_secs=2)
model = VQSeparator(embedding_dim=512, context_dim=1024, resolution=4096, language_model='model/Bio_ClinaBert')
if args.clip_dir:
model.load_state_dict(torch.load(args.clip_dir, map_location='cpu')['state_dict'])
print(f'Model Load from {args.clip_dir}....')
Editor = Ecgedit(disease_model=model, structure='linear', resolution=4096, num_channels=12, latent_size=1024, dlatent_size=2048, fmap_max=512,
loss="logistic", const_input_dim=0, device=device, n_classes=5, logger=logger, lr=args.lr)
classifier = EcgClassifer(classifer=args.classifer, num_classes=5, load_pretrain='best_w.pth')
best_f1 = -1
best_acc = -1
lr = args.lr
start_epoch = 1
stage = 1
if args.resume:
state = torch.load(f'{args.resume}/current.pth', map_location='cpu')
d_state = torch.load(f'{args.resume}/current_d.pth', map_location=torch.device('cpu'))
f_state = torch.load(f'{args.resume}/current_f.pth', map_location='cpu')
Editor.gen.load_state_dict(state['state_dict'])
Editor.dis.load_state_dict(d_state['state_dict'])
load_matching_parameters(Editor.disease_model, f_state['state_dict'])
start_epoch = state['epoch']
print_log(f"train with resume weight val_f1 {state['f1']}", model_save_dir)
print(f"Model init....")
if args.pretrain:
state = torch.load(args.resume, map_location='cpu')
d_state = torch.load(args.resume.replace('.pth', '_d.pth'), map_location='cpu')
Editor.gen.load_state_dict(state['state_dict'])
Editor.dis.load_state_dict(d_state['state_dict'])
print_log(f"train with pretrained weight val_f1 {state['f1']}", model_save_dir)
model = model.to(device)
classifier = classifier.to(device)
# utils.freeze_model(model)
utils.freeze_model(classifier)
train_dataset = ECGDataset(args.data_root+'reprepared/', True, classifier=True, choose_norm=True)
train_weight = train_dataset.sample_weight(path='weight_5_scls.json')
train_sampler = WeightedRandomSampler(train_weight, len(train_weight))
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size,
sampler=train_sampler, num_workers=args.num_workers, collate_fn=collect_fn_ori, drop_last=True)
val_dataset = ECGDataset(args.data_root+'reprepared/', False, classifier=True)
val_dataloader = DataLoader(val_dataset, batch_size=args.batch_size,
num_workers=args.num_workers, collate_fn=collect_fn_ori, drop_last=True)
print_log(f"train_datasize {len(train_dataset)} val_datasize {len(val_dataset)}", model_save_dir)
# optimizer and loss
print(f"Optimizer init")
criterion = [nn.BCELoss(), nn.CrossEntropyLoss()]
print(f"Start Training......")
for epoch in range(start_epoch, args.max_epoch + 1):
since = time.time()
train_loss, train_f1, train_acc = train_epoch(Editor, classifier,
epoch, logger,
criterion,
train_dataloader, model_save_dir, show_interval=10)
val_loss, val_f1, val_acc = val_epoch(Editor, classifier, epoch, logger, criterion, val_dataloader, save_dir=model_save_dir)
print_log('#epoch:%02d stage:%d train_loss:%.3e train_f1:%.3f train_acc:%.3f val_loss:%0.3e val_f1:%.3f val_acc:%.3f time:%s\n'
% (epoch, stage, train_loss, train_f1, train_acc, val_loss, val_f1, val_acc, utils.print_time_cost(since)), model_save_dir)
logger.add_scalar('train_loss', train_loss, global_step=epoch)
logger.add_scalar('train_f1', train_f1, global_step=epoch)
logger.add_scalar('train_acc', train_acc, global_step=epoch)
logger.add_scalar('val_loss', val_loss, global_step=epoch)
logger.add_scalar('val_f1', val_f1, global_step=epoch)
logger.add_scalar('val_acc', val_acc, global_step=epoch)
state, d_state, f_state = Editor.save_ckpt(epoch, val_loss, val_f1, val_acc, stage)
save_ckpt(state, d_state, f_state, best_acc < val_acc, model_save_dir)
best_f1 = max(best_f1, val_f1)
best_acc = max(best_acc, val_acc)
if epoch in args.stage_epoch:
stage += 1
lr /= args.lr_decay
best_w = os.path.join(model_save_dir, args.best_w)
Editor.gen.load_state_dict(torch.load(best_w)['state_dict'])
Editor.dis.load_state_dict(torch.load(best_w.replace('.pth', '_d.pth'))['state_dict'])
print_log(f"*" * 10 + "step into stage%02d lr %.3ef" % (stage, lr), model_save_dir)
def Gen_test(args):
model_save_dir = os.path.join(args.work_dir, args.model_name, time.strftime("%Y%m%d%H%M"))
if not os.path.exists(model_save_dir):
os.makedirs(model_save_dir)
with open(model_save_dir+"/config.json", mode="w") as f:
json.dump(args.__dict__, f, indent=4)
print_log(f"{args.model_name}: {args.detail}", model_save_dir)
logger = SummaryWriter(log_dir=model_save_dir, flush_secs=2)
model = VQSeparator(embedding_dim=512, context_dim=1024, resolution=4096, language_model='model/Bio_ClinaBert')
Editor = Ecgedit(disease_model=model, structure='linear', resolution=4096, num_channels=12, latent_size=1024, dlatent_size=2048, fmap_max=512,
loss="logistic", const_input_dim=0, device=device, n_classes=5, logger=logger, lr=args.lr)
if args.clip_dir:
model.load_state_dict(torch.load(args.clip_dir, map_location='cpu')['state_dict'])
print(f'Model Load from {args.clip_dir}....')
classifier = EcgClassifer(classifer=args.classifer, num_classes=5, load_pretrain='best_w.pth')
print(f"Model init....")
if args.pretrain:
state = torch.load(args.resume, map_location='cpu')
d_state = torch.load(args.resume.replace('.pth', '_d.pth'), map_location='cpu')
f_state = torch.load(args.resume.replace('.pth', '_f.pth'), map_location='cpu')
Editor.gen.load_state_dict(state['state_dict'])
Editor.dis.load_state_dict(d_state['state_dict'])
load_matching_parameters(Editor.disease_model, f_state['state_dict'])
print_log(f"train with pretrained weight val_f1 {state['f1']}", model_save_dir)
else:
print(f'Model did not pretrained!')
return
model = model.to(device)
classifier = classifier.to(device)
utils.freeze_model(Editor.disease_model)
utils.freeze_model(classifier)
utils.freeze_model(Editor.dis)
utils.freeze_model(Editor.gen)
# data
train_dataset = ECGDataset(args.data_root+'reprepared/', True, classifier=True)
train_weight = train_dataset.sample_weight(path='weight_5_scls.json')
train_sampler = WeightedRandomSampler(train_weight, len(train_weight))
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size,
sampler=train_sampler, num_workers=args.num_workers, collate_fn=collect_fn_ori, drop_last=True)
# generator
test_dataset = PTBXLTestClsdataset(args.data_root+'reprepared/', True, choose=['NORM',],
train_lis=['ptb-xl-a-large-publicly-available-electrocardiography-dataset-1.0.3/reprepared/Patient_Select_145_sclc_X_half1']) # choose normal
test_dataloader = DataLoader(test_dataset, batch_size=1,
num_workers=args.num_workers, drop_last=True)
print_log(f"train_datasize {len(train_dataset)} test_datasize {len(test_dataset)}", model_save_dir)
print(f"Start Generate......")
val_loss, val_f1, val_acc = GenerateECG(Editor, classifier, logger, test_dataloader,
train_dataloader,
save_dir=model_save_dir)
if __name__ == '__main__':
from config.parse import get_parse
parser, args = get_parse()
import yaml
with open(args.config, 'r') as f:
configs = yaml.safe_load(f)
for key,value in configs.items():
parser.add_argument("--"+key, default=value, type=type(value))
configs = parser.parse_args()
print(configs)
train(configs)
# configs.pretrain = True
# configs.resume = 'best.pth'
# Gen_test(configs)