-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathcontrolnet_demo.py
56 lines (42 loc) · 1.62 KB
/
controlnet_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
import cv2
import time
from PIL import Image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler, DDIMScheduler
import torch
from controlnet_aux import HEDdetector, OpenposeDetector
from diffusers.utils import load_image
from utils_sd import register_controlnet_pipeline, register_faster_forward, seed_everything
image = load_image("images/condition.jpeg")
image = np.array(image)
low_threshold = 100
high_threshold = 200
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image_condition = Image.fromarray(image)
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16
).to('cuda')
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
).to('cuda')
print('Warm up of the gpu')
for i in range(2):
image = pipe("Mona Lisa", image_condition).images[0]
#-------------------
print("Start Generating")
seed_everything(8888)
start_time = time.time()
image = pipe("Mona Lisa", image_condition).images[0]
end_time = time.time()
print("Origin Pipeline: {:.3f} seconds".format(end_time-start_time))
image.save('images/canny_out_origin.png')
register_controlnet_pipeline(pipe)
register_faster_forward(pipe.unet)
seed_everything(8888)
start_time = time.time()
image = pipe.call("Mona Lisa", image_condition).images[0]
end_time = time.time()
print("Faster Pipeline: {:.3f} seconds".format(end_time-start_time))
image.save('images/canny_out_faster.png')