-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_test.py
75 lines (58 loc) · 1.95 KB
/
model_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch
from torch import nn
import numpy as np
import matplotlib.pyplot as plt
steps = np.linspace(0, np.pi * 2, 100, dtype=np.float32)
input_x = np.sin(steps)
target_y = np.cos(steps)
plt.plot(steps, input_x, 'b-', label='input:sin')
plt.plot(steps, target_y, 'r-', label='target:cos')
plt.legend(loc='best')
plt.show()
class RNN(nn.Module):
def __init__(self, input_size, hidden_size):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.rnn = nn.RNN(
input_size=input_size,
hidden_size=hidden_size,
batch_first=True,
)
self.out = nn.Linear(hidden_size, 1)
def forward(self, input, hidden):
output, hidden = self.rnn(input, hidden)
output = self.out(output)
return output, hidden
def initHidden(self):
hidden = torch.randn(1, self.hidden_size)
return hidden
rnn = RNN(input_size=1, hidden_size=20)
hidden = rnn.initHidden()
optimizer = torch.optim.Adam(rnn.parameters(), lr=0.001)
loss_func = nn.MSELoss()
plt.figure(1, figsize=(12, 5))
plt.ion() # 开启交互模式
loss_list = []
for step in range(800):
start, end = step * np.pi, (step + 1) * np.pi
steps = np.linspace(start, end, 100, dtype=np.float32)
x_np = np.sin(steps)
y_np = np.cos(steps)
# (100, 1) 不加batch_size
x = torch.from_numpy(x_np).unsqueeze(-1)
y = torch.from_numpy(y_np).unsqueeze(-1)
y_predict, hidden = rnn(x, hidden)
hidden = hidden.data # 重新包装数据,断掉连接,不然会报错
loss = loss_func(y_predict, y)
optimizer.zero_grad() # 梯度清零
loss.backward() # 反向传播
optimizer.step() # 梯度下降
loss_list.append(loss.item())
if step % 10 == 0 or step % 10 == 1:
plt.plot(steps, y_np.flatten(), 'r-')
plt.plot(steps, y_predict.data.numpy().flatten(), 'b-')
plt.draw()
plt.pause(0.05)
plt.ioff()
plt.show()
plt.plot(loss_list)