-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_all_games.py
102 lines (71 loc) · 3.32 KB
/
test_all_games.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
""""
This is a Regression Test Suite to automatically test all combinations of games and ML frameworks. Each test
plays two quick games using an untrained neural network (randomly initialized) against a random player.
In order for the entire test suite to run successfully, all the required libraries must be installed. They are:
Pytorch, Keras.
[ Games ] Pytorch Keras
----------- ------- -----
- Othello [Yes] [Yes]
- TicTacToe [Yes]
- TicTacToe3D [Yes]
- Connect4 [Yes]
- Gobang [Yes]
- Tafl [Yes] [Yes]
- Rts [Yes]
- DotsAndBoxes [Yes]
"""
import unittest
import Arena
from MCTS import MCTS
from othello.OthelloGame import OthelloGame
from othello.OthelloPlayers import RandomPlayer
from othello.pytorch.NNet import NNetWrapper as OthelloPytorchNNet
from othello.keras.NNet import NNetWrapper as OthelloKerasNNet
from tictactoe.TicTacToeGame import TicTacToeGame
from tictactoe.keras.NNet import NNetWrapper as TicTacToeKerasNNet
from tictactoe_3d.TicTacToeGame import TicTacToeGame as TicTacToe3DGame
from tictactoe_3d.keras.NNet import NNetWrapper as TicTacToe3DKerasNNet
from connect4.Connect4Game import Connect4Game
from connect4.keras.NNet import NNetWrapper as Connect4KerasNNet
from gobang.GobangGame import GobangGame
from gobang.keras.NNet import NNetWrapper as GobangKerasNNet
from tafl.TaflGame import TaflGame
from tafl.pytorch.NNet import NNetWrapper as TaflPytorchNNet
from tafl.keras.NNet import NNetWrapper as TaflKerasNNet
from rts.RTSGame import RTSGame
from rts.keras.NNet import NNetWrapper as RTSKerasNNet
from dotsandboxes.DotsAndBoxesGame import DotsAndBoxesGame
from dotsandboxes.keras.NNet import NNetWrapper as DotsAndBoxesKerasNNet
import numpy as np
from utils import *
class TestAllGames(unittest.TestCase):
@staticmethod
def execute_game_test(game, neural_net):
rp = RandomPlayer(game).play
args = dotdict({'numMCTSSims': 25, 'cpuct': 1.0})
mcts = MCTS(game, neural_net(game), args)
n1p = lambda x: np.argmax(mcts.getActionProb(x, temp=0))
arena = Arena.Arena(n1p, rp, game)
print(arena.playGames(2, verbose=False))
def test_othello_pytorch(self):
self.execute_game_test(OthelloGame(6), OthelloPytorchNNet)
def test_othello_keras(self):
self.execute_game_test(OthelloGame(6), OthelloKerasNNet)
def test_tictactoe_keras(self):
self.execute_game_test(TicTacToeGame(), TicTacToeKerasNNet)
def test_tictactoe3d_keras(self):
self.execute_game_test(TicTacToe3DGame(3), TicTacToe3DKerasNNet)
def test_gobang_keras(self):
self.execute_game_test(GobangGame(), GobangKerasNNet)
def test_tafl_pytorch(self):
self.execute_game_test(TaflGame(5), TaflPytorchNNet)
def test_tafl_keras(self):
self.execute_game_test(TaflGame(5), TaflKerasNNet)
def test_connect4_keras(self):
self.execute_game_test(Connect4Game(5), Connect4KerasNNet)
def test_rts_keras(self):
self.execute_game_test(RTSGame(), RTSKerasNNet)
def test_dotsandboxes_keras(self):
self.execute_game_test(DotsAndBoxesGame(3), DotsAndBoxesKerasNNet)
if __name__ == '__main__':
unittest.main()