-
Notifications
You must be signed in to change notification settings - Fork 2.7k
/
Copy pathlab-07-1-learning_rate_and_evaluation.py
127 lines (113 loc) · 3.79 KB
/
lab-07-1-learning_rate_and_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# Lab 7 Learning rate and Evaluation
import tensorflow as tf
tf.set_random_seed(777) # for reproducibility
x_data = [[1, 2, 1],
[1, 3, 2],
[1, 3, 4],
[1, 5, 5],
[1, 7, 5],
[1, 2, 5],
[1, 6, 6],
[1, 7, 7]]
y_data = [[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[1, 0, 0],
[1, 0, 0]]
# Evaluation our model using this test dataset
x_test = [[2, 1, 1],
[3, 1, 2],
[3, 3, 4]]
y_test = [[0, 0, 1],
[0, 0, 1],
[0, 0, 1]]
X = tf.placeholder("float", [None, 3])
Y = tf.placeholder("float", [None, 3])
W = tf.Variable(tf.random_normal([3, 3]))
b = tf.Variable(tf.random_normal([3]))
# tf.nn.softmax computes softmax activations
# softmax = exp(logits) / reduce_sum(exp(logits), dim)
hypothesis = tf.nn.softmax(tf.matmul(X, W) + b)
# Cross entropy cost/loss
cost = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(hypothesis), axis=1))
# Try to change learning_rate to small numbers
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(cost)
# Correct prediction Test model
prediction = tf.argmax(hypothesis, 1)
is_correct = tf.equal(prediction, tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32))
# Launch graph
with tf.Session() as sess:
# Initialize TensorFlow variables
sess.run(tf.global_variables_initializer())
for step in range(201):
cost_val, W_val, _ = sess.run([cost, W, optimizer], feed_dict={X: x_data, Y: y_data})
print(step, cost_val, W_val)
# predict
print("Prediction:", sess.run(prediction, feed_dict={X: x_test}))
# Calculate the accuracy
print("Accuracy: ", sess.run(accuracy, feed_dict={X: x_test, Y: y_test}))
'''
when lr = 1.5
0 5.73203 [[-0.30548954 1.22985029 -0.66033536]
[-4.39069986 2.29670858 2.99386835]
[-3.34510708 2.09743214 -0.80419564]]
1 23.1494 [[ 0.06951046 0.29449689 -0.0999819 ]
[-1.95319986 -1.63627958 4.48935604]
[-0.90760708 -1.65020132 0.50593793]]
2 27.2798 [[ 0.44451016 0.85699677 -1.03748143]
[ 0.48429942 0.98872018 -0.57314301]
[ 1.52989244 1.16229868 -4.74406147]]
3 8.668 [[ 0.12396193 0.61504567 -0.47498202]
[ 0.22003263 -0.2470119 0.9268558 ]
[ 0.96035379 0.41933775 -3.43156195]]
4 5.77111 [[-0.9524312 1.13037777 0.08607888]
[-3.78651619 2.26245379 2.42393875]
[-3.07170963 3.14037919 -2.12054014]]
5 inf [[ nan nan nan]
[ nan nan nan]
[ nan nan nan]]
6 nan [[ nan nan nan]
[ nan nan nan]
[ nan nan nan]]
...
Prediction: [0 0 0]
Accuracy: 0.0
-------------------------------------------------
When lr = 1e-10
0 5.73203 [[ 0.80269563 0.67861295 -1.21728313]
[-0.3051686 -0.3032113 1.50825703]
[ 0.75722361 -0.7008909 -2.10820389]]
1 5.73203 [[ 0.80269563 0.67861295 -1.21728313]
[-0.3051686 -0.3032113 1.50825703]
[ 0.75722361 -0.7008909 -2.10820389]]
...
199 5.73203 [[ 0.80269563 0.67861295 -1.21728313]
[-0.3051686 -0.3032113 1.50825703]
[ 0.75722361 -0.7008909 -2.10820389]]
200 5.73203 [[ 0.80269563 0.67861295 -1.21728313]
[-0.3051686 -0.3032113 1.50825703]
[ 0.75722361 -0.7008909 -2.10820389]]
Prediction: [0 0 0]
Accuracy: 0.0
-------------------------------------------------
When lr = 0.1
0 5.73203 [[ 0.72881663 0.71536207 -1.18015325]
[-0.57753736 -0.12988332 1.60729778]
[ 0.48373488 -0.51433605 -2.02127004]]
1 3.318 [[ 0.66219079 0.74796319 -1.14612854]
[-0.81948912 0.03000021 1.68936598]
[ 0.23214608 -0.33772916 -1.94628811]]
...
199 0.672261 [[-1.15377033 0.28146935 1.13632679]
[ 0.37484586 0.18958236 0.33544877]
[-0.35609841 -0.43973011 -1.25604188]]
200 0.670909 [[-1.15885413 0.28058422 1.14229572]
[ 0.37609792 0.19073224 0.33304682]
[-0.35536593 -0.44033223 -1.2561723 ]]
Prediction: [2 2 2]
Accuracy: 1.0
'''