We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
#引用nezha模型 from transformers import NezhaModel, NezhaConfig
self.config = BertConfig.from_pretrained(config_path) self.bert_module = NezhaModel.from_pretrained(bert_dir, config=self.config) bert_outputs = self.bert_module(input_ids=x, attention_mask=mask, token_type_ids=segs, output_hidden_states =True)
bert_outputs结果中,多层结果是nan,不知道是什么原因。 BaseModelOutputWithPoolingAndCrossAttentions(last_hidden_state=tensor([[[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], ..., [nan, nan, nan, ..., nan, nan, nan]], device='cuda:0'), hidden_states=(tensor([[[ 0.5742, -0.2564, 0.4186, ..., 0.8307, -1.6965, 0.6848], [-0.6152, 0.1826, -1.1161, ..., 0.6985, -3.4405, 1.4675], [-0.2423, 0.8284, 0.5155, ..., 1.0843, -1.4233, 0.5122], ..., [-0.2828, -0.2603, -0.6676, ..., 0.5609, -2.0621, 0.5314],
[ 0.5203, 0.3228, -0.4273, ..., -0.2345, -0.1468, -0.2845], [ 0.5203, 0.3228, -0.4273, ..., -0.2345, -0.1468, -0.2845], [ 0.5203, 0.3228, -0.4273, ..., -0.2345, -0.1468, -0.2845]]], device='cuda:0'), tensor([[[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], ..., [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]]], device='cuda:0'),), past_key_values=None, attentions=None, cross_attentions=None)
The text was updated successfully, but these errors were encountered:
No branches or pull requests
#引用nezha模型
from transformers import NezhaModel, NezhaConfig
self.config = BertConfig.from_pretrained(config_path)
self.bert_module = NezhaModel.from_pretrained(bert_dir, config=self.config)
bert_outputs = self.bert_module(input_ids=x,
attention_mask=mask,
token_type_ids=segs,
output_hidden_states =True)
bert_outputs结果中,多层结果是nan,不知道是什么原因。
BaseModelOutputWithPoolingAndCrossAttentions(last_hidden_state=tensor([[[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan],
...,
[nan, nan, nan, ..., nan, nan, nan]], device='cuda:0'), hidden_states=(tensor([[[ 0.5742, -0.2564, 0.4186, ..., 0.8307, -1.6965, 0.6848],
[-0.6152, 0.1826, -1.1161, ..., 0.6985, -3.4405, 1.4675],
[-0.2423, 0.8284, 0.5155, ..., 1.0843, -1.4233, 0.5122],
...,
[-0.2828, -0.2603, -0.6676, ..., 0.5609, -2.0621, 0.5314],
The text was updated successfully, but these errors were encountered: