-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_gf_extractor.py
352 lines (280 loc) · 14.6 KB
/
train_gf_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
from __future__ import division, absolute_import
import numpy as np
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torchvision.models as models
import argparse
import torch.optim as optim
import time
import json
import logging
import scipy
from models.dgcnn import DGCNN
from models.meshnet import MeshNet
from models.SVCNN import SingleViewNet,CorrNet
from models.MVCNN import MVCNN
from tools.test_dataloader import TestDataloader
from tools.triplet_dataloader import TripletDataloader
from tools.utils import calculate_accuracy
from center_loss import CrossModalCenterLoss
from triplet_center_loss import TripletCenterLoss
from sklearn.preprocessing import normalize
from scipy.spatial.distance import cdist
from util.append_feature import append_feature
import warnings
from util.OS_utils import split_trainval,res2tab,acc_score, map_score
from pathlib import Path
warnings.filterwarnings('ignore',category=FutureWarning)
# Create the log
logger = logging.getLogger("Cross-Modal Model retrieval")
logger.setLevel(logging.INFO)
device = torch.device("cuda")
def log_string(str):
logger.info(str)
print(str)
def calc_map_label(source, target, label_test, name):
source = normalize(source, norm='l1', axis=1)
target = normalize(target, norm='l1', axis=1)
dist = cdist(source, target, 'cosine')
ord = dist.argsort()
num = dist.shape[0]
res = []
for i in range(num):
order = ord[i]
p = 0.0
r = 0.0
for j in range(num):
if label_test[i] == label_test[order[j]]: # 你这个不用计算距离 也能得出来啊
r += 1
p += (r / (j + 1))
if r > 0:
res += [p / r] # p/r 这是一个物体的AP值
else:
res += [0]
mAP = np.mean(res)
mAP_round = round(mAP * 100, 2)
log_string("%s mAP:%s" % (name, str(mAP_round)))
def test(img_net,mesh_net,pt_net,test_data_loader,test_set):
img_net = img_net.eval()
mesh_net = mesh_net.eval()
pt_net = pt_net.eval()
log_string('-----------------------------------test---------------------------------')
iteration = 0
point_correct = 0.0
mulview_correct = 0.0
mesh_correct = 0.0
batch_id = 0
img_feature_set = None
mesh_feature_set = None
point_feature_set = None
label_feature_set = None
for data in test_data_loader:
print("batch: %d/%d" % (batch_id,len(test_data_loader)))
pt, img_list, centers, corners, normals, neighbor_index, target = data
img_v1,img_v2,img_v3,img_v4 = img_list
views = np.stack(img_list,axis=1)
views = torch.from_numpy(views).to('cuda')
img_v1 = Variable(img_v1).to('cuda')
img_v2 = Variable(img_v2).to('cuda')
img_v3 = Variable(img_v3).to('cuda')
img_v4 = Variable(img_v4).to('cuda')
pt = Variable(pt).to('cuda')
pt = pt.permute(0,2,1)
print("pre:",target.shape)
target = target[:,0]
# torch.Size([96, 1])
target = Variable(target).to('cuda')
print(pt.shape,target.shape)
centers = Variable(torch.cuda.FloatTensor(centers.cuda()))
corners = Variable(torch.cuda.FloatTensor(corners.cuda()))
normals = Variable(torch.cuda.FloatTensor(normals.cuda()))
neighbor_index = Variable(torch.cuda.LongTensor(neighbor_index.cuda()))
img_feat = 0.5*(img_net(img_v1,img_v2)+img_net(img_v3,img_v4))
pt_feat = pt_net(pt)
mesh_feat = mesh_net(centers, corners, normals, neighbor_index)
### append feature
img_feature_set = append_feature(img_feature_set,img_feat.cpu().data.numpy())
mesh_feature_set = append_feature(mesh_feature_set, mesh_feat.cpu().data.numpy())
point_feature_set = append_feature(point_feature_set,pt_feat.cpu().data.numpy())
label_feature_set = append_feature(label_feature_set,target.cpu().data.numpy(),flatten = True)
iteration = iteration + 1
batch_id = batch_id + 1
calc_map_label(img_feature_set,img_feature_set,label_feature_set,"img to img")
calc_map_label(img_feature_set,mesh_feature_set,label_feature_set,"img to mesh")
calc_map_label(img_feature_set,point_feature_set,label_feature_set,"img to point")
calc_map_label(mesh_feature_set,mesh_feature_set,label_feature_set,"Mesh to mesh")
calc_map_label(mesh_feature_set,img_feature_set,label_feature_set,"Mesh to img")
calc_map_label(mesh_feature_set,point_feature_set,label_feature_set,"Mesh to Point")
calc_map_label(point_feature_set,point_feature_set,label_feature_set,"point to point")
calc_map_label(point_feature_set,img_feature_set,label_feature_set,"point to img")
calc_map_label(point_feature_set,mesh_feature_set,label_feature_set,"point to mesh")
def training(args):
file_handler = logging.FileHandler('%s/%s.txt' % ('./logs', args.log))
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
log_string('PARAMETER....')
if not os.path.exists(args.save):
os.makedirs(args.save)
img_net = SingleViewNet()
pt_net = DGCNN()
mesh_net = MeshNet()
model = CorrNet(img_net, pt_net, mesh_net, num_classes=args.num_classes)
model.train(True)
model = model.to('cuda')
model = torch.nn.DataParallel(model)
#cross entropy loss for classification
ce_criterion = nn.CrossEntropyLoss()
cmc_criterion = CrossModalCenterLoss(num_classes=args.num_classes, feat_dim=512, use_gpu=True)
#mse loss
mse_criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
optimizer_centloss = optim.SGD(cmc_criterion.parameters(), lr=args.lr_center)
train_set = TripletDataloader(dataset = args.dataset, num_points = args.num_points, num_classes=args.num_classes, dataset_dir=args.dataset_dir, partition='train')
test_set = TestDataloader(dataset=args.dataset, num_points = args.num_points , dataset_dir = args.dataset_dir, partition= 'test')
train_data_loader_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=True,num_workers=8)
test_data_loader_loader = torch.utils.data.DataLoader(test_set, batch_size=args.batch_size,shuffle=False, num_workers=8)
iteration = 0
start_time = time.time()
for epoch in range(args.epochs):
point_correct = 0.0
img_correct = 0.0
mesh_correct = 0.0
batch_id = 0
img_net.train(True)
pt_net.train(True)
mesh_net.train(True)
model.train(True)
for data in train_data_loader_loader:
print("epoch:%d [%d/%d]"%(epoch, batch_id, len(train_data_loader_loader)))
pt, img_list, centers, corners, normals, neighbor_index, target, target_vec = data
img_v1,img_v2,img_v3,img_v4 = img_list
img_v1 = Variable(img_v1).to('cuda')
img_v2 = Variable(img_v2).to('cuda')
img_v3 = Variable(img_v3).to('cuda')
img_v4 = Variable(img_v4).to('cuda')
pt = Variable(pt).to('cuda')
pt = pt.permute(0,2,1)
target = target[:,0]
target = Variable(target).to('cuda')
# target_vec = Variable(target_vec).to('cuda')
#print("target1.shape",target.shape,target_vec.shape)
centers = Variable(torch.cuda.FloatTensor(centers.cuda()))
corners = Variable(torch.cuda.FloatTensor(corners.cuda()))
normals = Variable(torch.cuda.FloatTensor(normals.cuda()))
neighbor_index = Variable(torch.cuda.LongTensor(neighbor_index.cuda()))
optimizer.zero_grad()
optimizer_centloss.zero_grad()
img_pred, pt_pred, mesh_pred, img_feat, pt_feat, mesh_feat = model(pt, img_v1, img_v2, centers, corners, normals, neighbor_index)
#cross-entropy loss for all the three modalities
#print("pt_pred:",pt_pred.shape,"**** target:",target.shape)
pt_ce_loss = ce_criterion(pt_pred, target)
print("pt_ce_loss:",pt_ce_loss.item())
img_ce_loss = ce_criterion(img_pred, target)
print("img_ce_loss:",img_ce_loss.item())
mesh_ce_loss = ce_criterion(mesh_pred, target)
print("mesh_ce_loss:",mesh_ce_loss.item())
ce_loss = pt_ce_loss + img_ce_loss + mesh_ce_loss
#cross-modal center loss
cmc_loss = cmc_criterion(torch.cat((img_feat, pt_feat, mesh_feat), dim = 0), torch.cat((target, target, target), dim = 0))
# MSE Loss
img_pt_mse_loss = mse_criterion(img_feat, pt_feat)
img_mesh_mse_loss = mse_criterion(img_feat, mesh_feat)
mesh_pt_mse_loss = mse_criterion(mesh_feat, pt_feat)
mse_loss = img_pt_mse_loss + img_mesh_mse_loss + mesh_pt_mse_loss
#weighted the three losses as final loss
loss = 10*ce_loss + args.weight_center * cmc_loss + 0.1 * mse_loss
loss.backward()
optimizer.step()
for param in cmc_criterion.parameters():
param.grad.data *= (1. / args.weight_center)
optimizer_centloss.step()
_, pt_pred = torch.max(pt_pred, dim=1)
_, img_pred = torch.max(img_pred, dim=1)
_, mh_pred = torch.max(mesh_pred, dim=1)
point_correct += torch.sum(pt_pred == target.data)
img_correct += torch.sum(img_pred == target.data)
mesh_correct += torch.sum(mh_pred == target.data)
if (iteration%args.lr_step) == 0:
lr = args.lr * (0.1 ** (iteration // args.lr_step))
print('New Learning Rate: ' + str(lr))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# update the learning rate of the center loss
if (iteration%args.lr_step) == 0:
lr_center = args.lr_center * (0.1 ** (iteration // args.lr_step))
print('New Center LR: ' + str(lr_center))
for param_group in optimizer_centloss.param_groups:
param_group['lr'] = lr_center
if((iteration+1) % args.per_save) ==0:
print('----------------- Save The Network ------------------------')
with open(args.save + str(iteration+1)+'-img_global_net.pkl', 'wb') as f:
torch.save(img_net, f)
with open(args.save + str(iteration+1)+'-pt_global_net.pkl', 'wb') as f:
torch.save(pt_net, f)
with open(args.save + str(iteration+1)+'-mesh_global_net.pkl', 'wb') as f:
torch.save(mesh_net, f)
iteration = iteration + 1
batch_id = batch_id + 1
epoch_point_acc = point_correct / len(train_set)
epoch_img_acc = img_correct / len(train_set)
epoch_mesh_acc = mesh_correct / len(train_set)
log_string("epoch:%d loss:%.4f ce_loss:%.4f cmc_loss:%.4f mse_loss:%.4f"%(epoch,loss.item(),ce_loss.item(),cmc_loss.item(),mse_loss.item()))
log_string("Point Cloud Train Accuracy:%.4f" % (epoch_point_acc))
log_string("Image Train Accuracy: %.4f" % (epoch_img_acc))
log_string("Mesh Train Accuracy: %.4f" % (epoch_mesh_acc))
with torch.no_grad():
test(img_net.eval(),mesh_net.eval(),pt_net.eval(),test_data_loader_loader,test_set)
if __name__ == "__main__":
# Training settings
parser = argparse.ArgumentParser(description='Cross Modal Retrieval for Point Cloud, Mesh, and Image Models')
parser.add_argument('--dataset', type=str, default='ModelNet40', metavar='dataset',
help='ModelNet10 or ModelNet40')
parser.add_argument('--dataset_dir', type=str, default='./dataset/', metavar='dataset_dir',
help='dataset_dir')
parser.add_argument('--num_classes', type=int, default=40, metavar='num_classes',
help='10 or 40 or 8')
parser.add_argument('--batch_size', type=int, default=24, metavar='batch_size',
help='Size of batch')
parser.add_argument('--epochs', type=int, default=1000, metavar='N',
help='number of episode to train ')
#optimizer
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='learning rate (default: 0.001, 0.1 if using sgd)')
parser.add_argument('--lr_step', type=int, default=20000,
help='how many iterations to decrease the learning rate')
parser.add_argument('--lr_center', type=float, default=0.001, metavar='LR',
help='learning rate for center loss (default: 0.5)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
#DGCNN
parser.add_argument('--num_points', type=int, default=1024,
help='num of points to use')
# 注意 num_points 调整成为了2048
#loss
parser.add_argument('--weight_center', type=float, default=1.0, metavar='weight_center',
help='weight center (default: 1.0)')
parser.add_argument('--weight_decay', type=float, default=1e-3, metavar='weight_decay',
help='learning rate (default: 1e-3)')
parser.add_argument('--per_save', type=int, default=1000,
help='how many iterations to save the model')
parser.add_argument('--per_print', type=int, default=100,
help='how many iterations to print the loss and accuracy')
parser.add_argument('--k', type=int, default=20, help='it is used in pointcloud')
parser.add_argument('--dropout', type=float, default=0.4, help='The argument in dropout')
parser.add_argument('--emb_dims', type=int,default=512)
parser.add_argument('--save', type=str, default='./checkpoints/ModelNet40/GF/ce10_cmc1_mse01/',
help='path to save the final model')
parser.add_argument('--gpu_id', type=str, default='0',
help='GPU used to train the network')
parser.add_argument('--log', type=str, default='ce10_cmc1_mse01',
help='path to the log information')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
torch.backends.cudnn.enabled = False
training(args)
#test(args)