forked from farmingyard/ShuffleNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshuffle_channel_layer.cu
93 lines (78 loc) · 3.34 KB
/
shuffle_channel_layer.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#include <algorithm>
#include <vector>
#include "caffe/layers/shuffle_channel_layer.hpp"
namespace caffe {
template <typename Dtype>
__global__ void ShuffleChannelKernel(const int nthreads, const int feature_map_size,
Dtype *output, const Dtype *input, int group_row, int group_column, int len) {
CUDA_KERNEL_LOOP(index, nthreads) {
const int n = index / group_row / group_column;
const int i = (index / group_column) % group_row;
const int j = index % group_column;
const Dtype* p_i = input + n * feature_map_size + (i * group_column + j) * len;
Dtype* p_o = output + n * feature_map_size + (j * group_row + i) * len;
for (int k = 0; k < len; k++)
p_o[k] = p_i[k];
}
}
template <typename Dtype>
void ShuffleChannelLayer<Dtype>::Resize_gpu(Dtype *output, const Dtype *input, int group_row, int group_column, int len)
{
for (int i = 0; i < group_row; ++i) // 2
{
for(int j = 0; j < group_column ; ++j) // 3
{
const Dtype* p_i = input + (i * group_column + j ) * len;
Dtype* p_o = output + (j * group_row + i ) * len;
caffe_copy(len, p_i, p_o);
}
}
}
template <typename Dtype>
void ShuffleChannelLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* bottom_data = bottom[0]->gpu_data();
Dtype* top_data = top[0]->mutable_gpu_data();
const int num = bottom[0]->num();
const int feature_map_size = bottom[0]->count(1);
const int sp_sz = bottom[0]->count(2);
const int chs = bottom[0]->channels();
int group_row = group_;
int group_column = int(chs / group_row);
CHECK_EQ(chs, (group_column * group_row)) << "Wrong group size.";
int count = num * group_column * group_row;
ShuffleChannelKernel<Dtype> << <CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS >> >(
count, feature_map_size, top_data, bottom_data, group_row, group_column, sp_sz);
//Dtype* temp_data = temp_blob_.mutable_gpu_data();
//for(int n = 0; n < num; ++n)
//{
// Resize_gpu(top_data + n*feature_map_size, bottom_data + n*feature_map_size, group_row, group_column, sp_sz);
//}
//caffe_copy(bottom[0]->count(), temp_blob_.gpu_data(), top_data);
}
template <typename Dtype>
void ShuffleChannelLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
if (propagate_down[0]) {
const Dtype* top_diff = top[0]->gpu_diff();
Dtype* bottom_diff = bottom[0]->mutable_gpu_diff();
const int num = bottom[0]->num();
const int feature_map_size = bottom[0]->count(1);
const int sp_sz = bottom[0]->count(2);
const int chs = bottom[0]->channels();
int group_row = int(chs / group_);
int group_column = group_;
int count = num * group_column * group_row;
ShuffleChannelKernel<Dtype> << <CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS >> >(
count, feature_map_size, bottom_diff, top_diff, group_row, group_column, sp_sz);
//Dtype* temp_diff = temp_blob_.mutable_gpu_diff();
// for(int n = 0; n < num; ++n)
// {
//Resize_gpu(bottom_diff + n * feature_map_size, top_diff + n*feature_map_size, group_row, group_column, sp_sz);
// }
//caffe_copy(top[0]->count(), temp_blob_.gpu_diff(), bottom_diff);
}
}
INSTANTIATE_LAYER_GPU_FUNCS(ShuffleChannelLayer);
} // namespace caffe