-
Notifications
You must be signed in to change notification settings - Fork 188
/
Copy pathFaceSwapper.cpp
315 lines (247 loc) · 10.9 KB
/
FaceSwapper.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#include "FaceSwapper.h"
#include <iostream>
FaceSwapper::FaceSwapper(const std::string landmarks_path)
{
try
{
dlib::deserialize(landmarks_path) >> pose_model;
}
catch (std::exception& e)
{
std::cerr << "Error loading landmarks from " << landmarks_path << std::endl
<< "You can download the file from http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2" << std::endl;
exit(-1);
}
}
FaceSwapper::~FaceSwapper()
{
}
void FaceSwapper::swapFaces(cv::Mat &frame, cv::Rect &rect_ann, cv::Rect &rect_bob)
{
small_frame = getMinFrame(frame, rect_ann, rect_bob);
frame_size = cv::Size(small_frame.cols, small_frame.rows);
getFacePoints(small_frame);
getTransformationMatrices();
mask_ann.create(frame_size, CV_8UC1);
mask_bob.create(frame_size, CV_8UC1);
getMasks();
getWarppedMasks();
refined_masks = getRefinedMasks();
extractFaces();
warpped_faces = getWarppedFaces();
colorCorrectFaces();
auto refined_mask_ann = refined_masks(big_rect_ann);
auto refined_mask_bob = refined_masks(big_rect_bob);
featherMask(refined_mask_ann);
featherMask(refined_mask_bob);
pasteFacesOnFrame();
}
cv::Mat FaceSwapper::getMinFrame(const cv::Mat &frame, cv::Rect &rect_ann, cv::Rect &rect_bob)
{
cv::Rect bounding_rect = rect_ann | rect_bob;
bounding_rect -= cv::Point(50, 50);
bounding_rect += cv::Size(100, 100);
bounding_rect &= cv::Rect(0, 0, frame.cols, frame.rows);
this->rect_ann = rect_ann - bounding_rect.tl();
this->rect_bob = rect_bob - bounding_rect.tl();
big_rect_ann = ((this->rect_ann - cv::Point(rect_ann.width / 4, rect_ann.height / 4)) + cv::Size(rect_ann.width / 2, rect_ann.height / 2)) & cv::Rect(0, 0, bounding_rect.width, bounding_rect.height);
big_rect_bob = ((this->rect_bob - cv::Point(rect_bob.width / 4, rect_bob.height / 4)) + cv::Size(rect_bob.width / 2, rect_bob.height / 2)) & cv::Rect(0, 0, bounding_rect.width, bounding_rect.height);
return frame(bounding_rect);
}
void FaceSwapper::getFacePoints(const cv::Mat &frame)
{
using namespace dlib;
dlib_rects[0] = rectangle(rect_ann.x, rect_ann.y, rect_ann.x + rect_ann.width, rect_ann.y + rect_ann.height);
dlib_rects[1] = rectangle(rect_bob.x, rect_bob.y, rect_bob.x + rect_bob.width, rect_bob.y + rect_bob.height);
dlib_frame = frame;
shapes[0] = pose_model(dlib_frame, dlib_rects[0]);
shapes[1] = pose_model(dlib_frame, dlib_rects[1]);
auto getPoint = [&](int shape_index, int part_index) -> const cv::Point2i
{
const auto &p = shapes[shape_index].part(part_index);
return cv::Point2i(p.x(), p.y());
};
points_ann[0] = getPoint(0, 0);
points_ann[1] = getPoint(0, 3);
points_ann[2] = getPoint(0, 5);
points_ann[3] = getPoint(0, 8);
points_ann[4] = getPoint(0, 11);
points_ann[5] = getPoint(0, 13);
points_ann[6] = getPoint(0, 16);
cv::Point2i nose_length = getPoint(0, 27) - getPoint(0, 30);
points_ann[7] = getPoint(0, 26) + nose_length;
points_ann[8] = getPoint(0, 17) + nose_length;
points_bob[0] = getPoint(1, 0);
points_bob[1] = getPoint(1, 3);
points_bob[2] = getPoint(1, 5);
points_bob[3] = getPoint(1, 8);
points_bob[4] = getPoint(1, 11);
points_bob[5] = getPoint(1, 13);
points_bob[6] = getPoint(1, 16);
nose_length = getPoint(1, 27) - getPoint(1, 30);
points_bob[7] = getPoint(1, 26) + nose_length;
points_bob[8] = getPoint(1, 17) + nose_length;
affine_transform_keypoints_ann[0] = points_ann[3];
affine_transform_keypoints_ann[1] = getPoint(0, 36);
affine_transform_keypoints_ann[2] = getPoint(0, 45);
affine_transform_keypoints_bob[0] = points_bob[3];
affine_transform_keypoints_bob[1] = getPoint(1, 36);
affine_transform_keypoints_bob[2] = getPoint(1, 45);
feather_amount.width = feather_amount.height = (int)cv::norm(points_ann[0] - points_ann[6]) / 8;
}
void FaceSwapper::getTransformationMatrices()
{
trans_ann_to_bob = cv::getAffineTransform(affine_transform_keypoints_ann, affine_transform_keypoints_bob);
cv::invertAffineTransform(trans_ann_to_bob, trans_bob_to_ann);
}
void FaceSwapper::getMasks()
{
mask_ann.setTo(cv::Scalar::all(0));
mask_bob.setTo(cv::Scalar::all(0));
cv::fillConvexPoly(mask_ann, points_ann, 9, cv::Scalar(255));
cv::fillConvexPoly(mask_bob, points_bob, 9, cv::Scalar(255));
}
void FaceSwapper::getWarppedMasks()
{
cv::warpAffine(mask_ann, warpped_mask_ann, trans_ann_to_bob, frame_size, cv::INTER_NEAREST, cv::BORDER_CONSTANT, cv::Scalar(0));
cv::warpAffine(mask_bob, warpped_mask_bob, trans_bob_to_ann, frame_size, cv::INTER_NEAREST, cv::BORDER_CONSTANT, cv::Scalar(0));
}
cv::Mat FaceSwapper::getRefinedMasks()
{
cv::bitwise_and(mask_ann, warpped_mask_bob, refined_ann_and_bob_warpped);
cv::bitwise_and(mask_bob, warpped_mask_ann, refined_bob_and_ann_warpped);
cv::Mat refined_masks(frame_size, CV_8UC1, cv::Scalar(0));
refined_ann_and_bob_warpped.copyTo(refined_masks, refined_ann_and_bob_warpped);
refined_bob_and_ann_warpped.copyTo(refined_masks, refined_bob_and_ann_warpped);
return refined_masks;
}
void FaceSwapper::extractFaces()
{
small_frame.copyTo(face_ann, mask_ann);
small_frame.copyTo(face_bob, mask_bob);
}
cv::Mat FaceSwapper::getWarppedFaces()
{
cv::Mat warpped_faces(frame_size, CV_8UC3, cv::Scalar::all(0));
cv::warpAffine(face_ann, warpped_face_ann, trans_ann_to_bob, frame_size, cv::INTER_NEAREST, cv::BORDER_CONSTANT, cv::Scalar(0, 0, 0));
cv::warpAffine(face_bob, warpped_face_bob, trans_bob_to_ann, frame_size, cv::INTER_NEAREST, cv::BORDER_CONSTANT, cv::Scalar(0, 0, 0));
warpped_face_ann.copyTo(warpped_faces, warpped_mask_ann);
warpped_face_bob.copyTo(warpped_faces, warpped_mask_bob);
return warpped_faces;
}
void FaceSwapper::colorCorrectFaces()
{
specifiyHistogram(small_frame(big_rect_ann), warpped_faces(big_rect_ann), warpped_mask_bob(big_rect_ann));
specifiyHistogram(small_frame(big_rect_bob), warpped_faces(big_rect_bob), warpped_mask_ann(big_rect_bob));
}
void FaceSwapper::featherMask(cv::Mat &refined_masks)
{
cv::erode(refined_masks, refined_masks, getStructuringElement(cv::MORPH_RECT, feather_amount), cv::Point(-1, -1), 1, cv::BORDER_CONSTANT, cv::Scalar(0));
cv::blur(refined_masks, refined_masks, feather_amount, cv::Point(-1, -1), cv::BORDER_CONSTANT);
}
inline void FaceSwapper::pasteFacesOnFrame()
{
for (size_t i = 0; i < small_frame.rows; i++)
{
auto frame_pixel = small_frame.row(i).data;
auto faces_pixel = warpped_faces.row(i).data;
auto masks_pixel = refined_masks.row(i).data;
for (size_t j = 0; j < small_frame.cols; j++)
{
if (*masks_pixel != 0)
{
*frame_pixel = ((255 - *masks_pixel) * (*frame_pixel) + (*masks_pixel) * (*faces_pixel)) >> 8; // divide by 256
*(frame_pixel + 1) = ((255 - *(masks_pixel + 1)) * (*(frame_pixel + 1)) + (*(masks_pixel + 1)) * (*(faces_pixel + 1))) >> 8;
*(frame_pixel + 2) = ((255 - *(masks_pixel + 2)) * (*(frame_pixel + 2)) + (*(masks_pixel + 2)) * (*(faces_pixel + 2))) >> 8;
}
frame_pixel += 3;
faces_pixel += 3;
masks_pixel++;
}
}
}
void FaceSwapper::specifiyHistogram(const cv::Mat source_image, cv::Mat target_image, cv::Mat mask)
{
std::memset(source_hist_int, 0, sizeof(int) * 3 * 256);
std::memset(target_hist_int, 0, sizeof(int) * 3 * 256);
for (size_t i = 0; i < mask.rows; i++)
{
auto current_mask_pixel = mask.row(i).data;
auto current_source_pixel = source_image.row(i).data;
auto current_target_pixel = target_image.row(i).data;
for (size_t j = 0; j < mask.cols; j++)
{
if (*current_mask_pixel != 0) {
source_hist_int[0][*current_source_pixel]++;
source_hist_int[1][*(current_source_pixel + 1)]++;
source_hist_int[2][*(current_source_pixel + 2)]++;
target_hist_int[0][*current_target_pixel]++;
target_hist_int[1][*(current_target_pixel + 1)]++;
target_hist_int[2][*(current_target_pixel + 2)]++;
}
// Advance to next pixel
current_source_pixel += 3;
current_target_pixel += 3;
current_mask_pixel++;
}
}
// Calc CDF
for (size_t i = 1; i < 256; i++)
{
source_hist_int[0][i] += source_hist_int[0][i - 1];
source_hist_int[1][i] += source_hist_int[1][i - 1];
source_hist_int[2][i] += source_hist_int[2][i - 1];
target_hist_int[0][i] += target_hist_int[0][i - 1];
target_hist_int[1][i] += target_hist_int[1][i - 1];
target_hist_int[2][i] += target_hist_int[2][i - 1];
}
// Normalize CDF
for (size_t i = 0; i < 256; i++)
{
source_histogram[0][i] = (source_hist_int[0][255] ? (float)source_hist_int[0][i] / source_hist_int[0][255] : 0);
source_histogram[1][i] = (source_hist_int[1][255] ? (float)source_hist_int[1][i] / source_hist_int[1][255] : 0);
source_histogram[2][i] = (source_hist_int[2][255] ? (float)source_hist_int[2][i] / source_hist_int[2][255] : 0);
target_histogram[0][i] = (target_hist_int[0][255] ? (float)target_hist_int[0][i] / target_hist_int[0][255] : 0);
target_histogram[1][i] = (target_hist_int[1][255] ? (float)target_hist_int[1][i] / target_hist_int[1][255] : 0);
target_histogram[2][i] = (target_hist_int[2][255] ? (float)target_hist_int[2][i] / target_hist_int[2][255] : 0);
}
// Create lookup table
auto binary_search = [&](const float needle, const float haystack[]) -> uint8_t
{
uint8_t l = 0, r = 255, m;
while (l < r)
{
m = (l + r) / 2;
if (needle > haystack[m])
l = m + 1;
else
r = m - 1;
}
// TODO check closest value
return m;
};
for (size_t i = 0; i < 256; i++)
{
LUT[0][i] = binary_search(target_histogram[0][i], source_histogram[0]);
LUT[1][i] = binary_search(target_histogram[1][i], source_histogram[1]);
LUT[2][i] = binary_search(target_histogram[2][i], source_histogram[2]);
}
// repaint pixels
for (size_t i = 0; i < mask.rows; i++)
{
auto current_mask_pixel = mask.row(i).data;
auto current_target_pixel = target_image.row(i).data;
for (size_t j = 0; j < mask.cols; j++)
{
if (*current_mask_pixel != 0)
{
*current_target_pixel = LUT[0][*current_target_pixel];
*(current_target_pixel + 1) = LUT[1][*(current_target_pixel + 1)];
*(current_target_pixel + 2) = LUT[2][*(current_target_pixel + 2)];
}
// Advance to next pixel
current_target_pixel += 3;
current_mask_pixel++;
}
}
}