在 《漫画解说内存映射》一文中介绍过 虚拟内存
与 物理内存
映射的原理与过程,虚拟内存与物理内存进行映射的过程被称为 内存映射
。内存映射是硬件(内存管理单元)级别的功能,必须按照硬件的规范设置好内存映射的关系,进程才能正常运行。
但内存映射并不能区分内存的用途,比如我们想知道虚拟内存区间 0 ~ 2MB 是用作存储数据还是存储指令,这就很难从内存映射中获取到相关信息。所以,Linux 根据功能上的差异,来对虚拟内存空间进行管理。
今天,我们来介绍一下 Linux 对虚拟内存空间管理的细节。
之前我们说过,在 32 位的操作系统中,每个进程都拥有 4GB 的虚拟内存空间。Linux 根据功能上的差异,把整个虚拟内存空间划分为多个不同区间,称为 段
。
我们先来看看 Linux 进程虚拟内存空间的布局图,如图 1 所示:
上图展示了 Linux 进程的虚拟内存空间布局情况,我们只关注 用户空间
的布局。
从上图可以看出,进程的用户空间大小为 3GB。Linux 按照功能上的差异,把一个进程的用户空间划分为多个段,下面介绍一下各个段的作用:
代码段
:用于存放程序中可执行代码的段。数据段
:用于存放已经初始化的全局变量或静态变量的段。如在 C 语言中,使用语句int global = 10;
定义的全局变量。未初始化数据段
:用于存放未初始化的全局变量或静态变量的段。如在 C 语言中,使用语句int global;
定义的全局变量。堆
:用于存放使用malloc
函数申请的内存。mmap区
:用于存放使用mmap
函数映射的内存区。栈
:用于存放函数局部变量和函数参数。
从上面的介绍可知,Linux 按照功能上的差异,把虚拟内存空间划分为多个 段
。那么在内核中,是通过什么结构来管理这些段的呢?
答案就是:vm_area_struct。
内核通过 vm_area_struct
结构(虚拟内存区)来管理各个 段
,其定义如下:
struct vm_area_struct {
struct mm_struct *vm_mm; /* The address space we belong to. */
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address within vm_mm. */
/* linked list of VM areas per task, sorted by address */
struct vm_area_struct *vm_next;
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */
struct rb_node vm_rb;
...
/* Function pointers to deal with this struct. */
const struct vm_operations_struct *vm_ops;
...
};
下面介绍一下各个字段的作用:
vm_mm
:指向进程的内存管理对象,每个进程都有一个类型为mm_struct
的内存管理对象,用于管理进程的虚拟内存空间和内存映射等。vm_start
:虚拟内存区的起始虚拟内存地址。vm_end
:虚拟内存区的结束虚拟内存地址。vm_next
:Linux 会通过链表把进程的所有虚拟内存区连接起来,这个字段用于指向下一个虚拟内存区。vm_page_prot
:主要用于保存当前虚拟内存区所映射的物理内存页的读写权限。vm_flags
:标识当前虚拟内存区的功能特性。vm_rb
:某些场景中需要通过虚拟内存地址查找对应的虚拟内存区,为了加速查找过程,内核以虚拟内存地址作为key,把进程所有的虚拟内存区保存到一棵红黑树中,而这个字段就是红黑树的节点结构。vm_ops
:每个虚拟内存区都可以自定义一套操作接口,通过操作接口,能够让虚拟内存区实现一些特定的功能,比如:把虚拟内存区映射到文件。而vm_ops
字段就是虚拟内存区的操作接口集,一般在创建虚拟内存区时指定。
我们通过图 2 来展示内核是怎么通过 vm_area_struct
结构来管理进程中的所有 段
:
从上图可以看出,内核通过一个链表和一棵红黑树来管理进程中所有的 段
。mm_struct
结构的 mmap
字段就是链表的头节点,而 mm_rb
字段就是红黑树的根节点。
前面我们介绍了 Linux 会把虚拟内存地址划分为多个 段
,并且使用 vm_area_struct
结构来管理这些段。那么,这些虚拟内存区是怎么建立起来的呢?
在介绍进程虚拟内存区建立的过程前,我们先来简单介绍一下 ELF文件格式
。
ELF 全称 Executable and Linkable Format,即可执行可链接文件格式。在 Linux 系统中,就是使用这种文件格式来存储一个可执行的应用程序。 让我们来看一下 ELF 文件格式由哪些结构组成:
一般一个 ELF 文件由以下三部分组成:
- ELF 头(ELF header):描述应用程序的类型、CPU架构、入口地址、程序头表偏移和节头表偏移等等;
- 程序头表(Program header table):列举了所有有效的段(segments)和他们的属性,程序头表需要加载器将文件中的段加载到虚拟内存段中;
- 节头表(Section header table):包含对节(sections)的描述。
ELF 文件的结构大概如图3所示:
当内核加载一个应用程序时,就是通过读取 ELF 文件的信息,然后把文件中所有的段加载到虚拟内存的段中。ELF 文件通过 程序头表
来描述应用程序中所有的段,表中的每一个项都描述一个段的信息。我们先来看看 程序头表
项的结构定义:
typedef struct elf64_phdr {
Elf64_Word p_type; // 段的类型
Elf64_Word p_flags; // 可读写标志
Elf64_Off p_offset; // 段在ELF文件中的偏移量
Elf64_Addr p_vaddr; // 段的虚拟内存地址
Elf64_Addr p_paddr; // 段的物理内存地址
Elf64_Xword p_filesz; // 段占用文件的大小
Elf64_Xword p_memsz; // 段占用内存的大小
Elf64_Xword p_align; // 内存对齐
} Elf64_Phdr;
所以,程序加载器可以通过 ELF 头中获取到程序头表的偏移量,然后通过程序头表的偏移量读取到程序头表的数据,再通过程序头表来获取到所有段的信息。
我们可以通过 readelf -S file
命令来查看 ELF 文件的段(节)信息,如下图所示:
上面列出了 代码段
、数据段
、未初始化数据段
和 注释段
的信息。
要加载一个程序,需要调用 execve
系统调用来完成。我们来看看 execve
系统调用的调用栈:
sys_execve
└→ do_execve
└→ do_execveat_common
└→ __do_execve_file
└→ exec_binprm
└→ search_binary_handler
└→ load_elf_binary
从上面的调用者可以看出,execve
系统调用最终会调用 load_elf_binary
函数来加载程序的 ELF 文件。
由于 load_elf_binary
函数的实现比较复杂,所以我们分段来解说:
(1)读取并检查ELF头
static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
{
...
struct {
struct elfhdr elf_ex;
struct elfhdr interp_elf_ex;
} *loc;
loc = kmalloc(sizeof(*loc), GFP_KERNEL);
if (!loc) {
retval = -ENOMEM;
goto out_ret;
}
// 1. 获取ELF头
loc->elf_ex = *((struct elfhdr *)bprm->buf);
retval = -ENOEXEC;
// 2. 检查ELF签名是否正确
if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
goto out;
// 3. 是否是可执行文件或者动态库
if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
goto out;
// 4. 检查系统架构是否正确
if (!elf_check_arch(&loc->elf_ex))
goto out;
...
上面这段代码主要是读取应用程序的 ELF 头,然后检查 ELF 头信息是否合法。
(2)读取程序头表
size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr); // 程序头表的大小
retval = -ENOMEM;
elf_phdata = kmalloc(size, GFP_KERNEL); // 申请一块内存来保存程序头表
if (!elf_phdata)
goto out;
// 从ELF文件中读取程序头表的数据, 并且保存到 elf_phdata 变量中
retval = kernel_read(bprm->file, loc->elf_ex.e_phoff, (char *)elf_phdata, size);
if (retval != size) {
if (retval >= 0)
retval = -EIO;
goto out_free_ph;
}
...
上面的代码主要完成以下几个工作:
- 从 ELF 头的信息中获取到程序头表的大小。
- 调用
kmalloc
函数申请一块内存来保存程序头表。 - 调用
kernel_read
函数从 ELF 文件中读取程序头表的数据,保存到elf_phdata
变量中,程序头表的偏移量可以通过 ELF 头的e_phoff
字段获取。
(3)加载段到虚拟内存
// 遍历程序头表所有的段
for (i = 0, elf_ppnt = elf_phdata; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
int elf_prot = 0, elf_flags;
unsigned long k, vaddr;
if (elf_ppnt->p_type != PT_LOAD) // 判断段是否需要加载
continue;
...
// 段的可读写权限
if (elf_ppnt->p_flags & PF_R)
elf_prot |= PROT_READ;
if (elf_ppnt->p_flags & PF_W)
elf_prot |= PROT_WRITE;
if (elf_ppnt->p_flags & PF_X)
elf_prot |= PROT_EXEC;
elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
vaddr = elf_ppnt->p_vaddr; // 获取段的虚拟内存地址
...
// 把段加载到虚拟内存
error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, elf_prot, elf_flags, 0);
...
}
上面这段代码主要完成的工作是:
- 遍历程序头表所有的段。
- 判断段是否需要加载。
- 获取段的可读写权限和段的虚拟内存地址。
- 调用
elf_map
函数把段加载到虚拟内存。
所以,把段加载到虚拟内存主要通过 elf_map
函数完成。我们来看看 elf_map
函数的调用栈:
elf_map
└→ do_mmap
└→ do_mmap_pgoff
└→ mmap_region
从上面的调用者可以看出,elf_map
函数最终会调用 mmap_region
来完成加载段到虚拟内存。我们分析以下 mmap_region
函数的实现:
unsigned long
mmap_region(struct file *file, unsigned long addr, unsigned long len,
unsigned long flags, unsigned int vm_flags, unsigned long pgoff)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma, *prev;
...
// 申请一个 vm_area_struct 结构
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (!vma) {
error = -ENOMEM;
goto unacct_error;
}
// 设置 vm_area_struct 结构各个字段的值
vma->vm_mm = mm;
vma->vm_start = addr; // 段的开始虚拟内存地址
vma->vm_end = addr + len; // 段的结束虚拟内存地址
vma->vm_flags = vm_flags; // 段的功能特性
vma->vm_page_prot = vm_get_page_prot(vm_flags);
vma->vm_pgoff = pgoff;
...
// 把 vm_area_struct 结构连接到虚拟内存区链表和红黑树中
vma_link(mm, vma, prev, rb_link, rb_parent);
...
return addr;
}
上面代码对 mmap_region
函数进行了精简,精简后的工作主要有:
- 调用
kmem_cache_zalloc
函数申请一个vm_area_struct
(虚拟内存区)结构。 - 设置
vm_area_struct
结构各个字段的值。 - 调用
vma_link
函数把vm_area_struct
结构连接到虚拟内存区链表和红黑树中。
通过上面的过程,内核就把应用程序的所有段加载到虚拟内存中。
本文主要介绍了 Linux 内核是怎么加载应用程序,并且在虚拟内存中建立各个段的布局。本文主要关注的是虚拟内存布局的建立过程,但加载应用程序的很多细节都忽略了(如怎么设置进程入口),有兴趣可以自行查阅相关的资料和书籍。