forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
94 lines (77 loc) · 3.38 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import numpy as np
import paddle.fluid as fluid
from paddlerec.core.utils import envs
from paddlerec.core.model import ModelBase
class Model(ModelBase):
def __init__(self, config):
ModelBase.__init__(self, config)
def _init_hyper_parameters(self):
self.watch_vec_size = envs.get_global_env(
"hyper_parameters.watch_vec_size")
self.search_vec_size = envs.get_global_env(
"hyper_parameters.search_vec_size")
self.other_feat_size = envs.get_global_env(
"hyper_parameters.other_feat_size")
self.output_size = envs.get_global_env("hyper_parameters.output_size")
self.layers = envs.get_global_env("hyper_parameters.layers")
def input_data(self, is_infer=False, **kwargs):
watch_vec = fluid.data(
name="watch_vec",
shape=[None, self.watch_vec_size],
dtype="float32")
search_vec = fluid.data(
name="search_vec",
shape=[None, self.search_vec_size],
dtype="float32")
other_feat = fluid.data(
name="other_feat",
shape=[None, self.other_feat_size],
dtype="float32")
label = fluid.data(name="label", shape=[None, 1], dtype="int64")
inputs = [watch_vec] + [search_vec] + [other_feat] + [label]
return inputs
def net(self, inputs, is_infer=False):
concat_feats = fluid.layers.concat(input=inputs[:-1], axis=-1)
l1 = self._fc('l1', concat_feats, self.layers[0], 'relu')
l2 = self._fc('l2', l1, self.layers[1], 'relu')
l3 = self._fc('l3', l2, self.layers[2], 'relu')
l4 = self._fc('l4', l3, self.output_size, 'softmax')
num_seqs = fluid.layers.create_tensor(dtype='int64')
acc = fluid.layers.accuracy(input=l4, label=inputs[-1], total=num_seqs)
cost = fluid.layers.cross_entropy(input=l4, label=inputs[-1])
avg_cost = fluid.layers.mean(cost)
self._cost = avg_cost
self._metrics["acc"] = acc
def _fc(self, tag, data, out_dim, active='relu'):
init_stddev = 1.0
scales = 1.0 / np.sqrt(data.shape[1])
if tag == 'l4':
p_attr = fluid.param_attr.ParamAttr(
name='%s_weight' % tag,
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=init_stddev * scales))
else:
p_attr = None
b_attr = fluid.ParamAttr(
name='%s_bias' % tag, initializer=fluid.initializer.Constant(0.1))
out = fluid.layers.fc(input=data,
size=out_dim,
act=active,
param_attr=p_attr,
bias_attr=b_attr,
name=tag)
return out