forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
74 lines (66 loc) · 2.65 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
from paddlerec.core.utils import envs
from paddlerec.core.model import ModelBase
class Model(ModelBase):
def __init__(self, config):
ModelBase.__init__(self, config)
self.dict_dim = 100
self.max_len = 10
self.cnn_dim = 32
self.cnn_filter_size = 128
self.emb_dim = 8
self.hid_dim = 128
self.class_dim = 2
self.is_sparse = envs.get_global_env("hyper_parameters.is_sparse",
False)
def input_data(self, is_infer=False, **kwargs):
data = fluid.data(
name="input", shape=[None, self.max_len], dtype='int64')
label = fluid.data(name="label", shape=[None, 1], dtype='int64')
seq_len = fluid.data(name="seq_len", shape=[None], dtype='int64')
return [data, label, seq_len]
def net(self, input, is_infer=False):
""" network definition """
data = input[0]
label = input[1]
seq_len = input[2]
# embedding layer
emb = fluid.embedding(
input=data,
size=[self.dict_dim, self.emb_dim],
is_sparse=self.is_sparse)
emb = fluid.layers.sequence_unpad(emb, length=seq_len)
# convolution layer
conv = fluid.nets.sequence_conv_pool(
input=emb,
num_filters=self.cnn_dim,
filter_size=self.cnn_filter_size,
act="tanh",
pool_type="max")
# full connect layer
fc_1 = fluid.layers.fc(input=[conv], size=self.hid_dim)
# softmax layer
prediction = fluid.layers.fc(input=[fc_1],
size=self.class_dim,
act="softmax")
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
acc = fluid.layers.accuracy(input=prediction, label=label)
self._cost = avg_cost
if is_infer:
self._infer_results["acc"] = acc
else:
self._metrics["acc"] = acc