title | type | toc | summary |
---|---|---|---|
Pre-installed versions on physics servers |
default |
true |
<p>This page points to versions of Histogrammar installed at Fermilab's LPC and CERN's LXPLUS servers. Use this page if you have access to one of these systems.</p>
|
If you have access to the LPC at Fermilab, you can run a preinstalled copy of Histogrammar version 0.7.1.
LPC at Fermilab | cmslpc-sl6.fnal.gov |
---|---|
for Scala | /uscms/home/pivarski/public/histogrammar-0.7.1.jar |
for SparkSQL | /uscms/home/pivarski/public/histogrammar-sparksql-0.7.1.jar |
for Python 2.6 | /uscms/home/pivarski/public/histogrammar0.7-python2.6 |
for C++ | /uscms/home/pivarski/public/include07 |
Scala 2.10.5 | /uscms/home/pivarski/public/scala-2.10.5 |
Spark 1.6.1 | /uscms/home/pivarski/public/spark-1.6.1-bin-hadoop1 |
To start a Scala prompt with Histogrammar loaded, do the following:
export PATH=/uscms/home/pivarski/public/scala-2.10.5/bin:$PATH
scala -cp /uscms/home/pivarski/public/histogrammar-0.7.1.jar
scala> import org.dianahep.histogrammar._
To start a local (non-distributed, testing) Spark session with Histogrammar loaded, do the following:
export PATH=/uscms/home/pivarski/public/spark-1.6.1-bin-hadoop1/bin:$PATH
spark-shell --jars=/uscms/home/pivarski/public/histogrammar-0.7.1.jar,/uscms/home/pivarski/public/histogrammar-sparksql-0.7.1.jar
scala> import org.dianahep.histogrammar._
scala> import org.dianahep.histogrammar.sparksql._
To use Histogrammar in Python, do:
export PYTHONPATH=/uscms/home/pivarski/public/histogrammar0.7-python2.6:$PYTHONPATH
python
>>> from histogrammar import *
To use Histogrammar in a C++ project, add:
-I /uscms/home/pivarski/public/include07
to your compiler options and
#include "histogrammar.hpp"
in your code.
If you have access to LXPLUS at CERN, you can run a preinstalled copy of Histogrammar version 0.7.1.
LXPLUS at CERN | lxplus.cern.ch |
---|---|
for Scala | /afs/cern.ch/user/p/pivarski/public/histogrammar-0.7.1.jar |
for SparkSQL | /afs/cern.ch/user/p/pivarski/public/histogrammar-sparksql-0.7.1.jar |
for Python 2.6 | /afs/cern.ch/user/p/pivarski/public/histogrammar0.7-python2.6 |
for C++ | /afs/cern.ch/user/p/pivarski/public/include07 |
Scala 2.10.5 | /afs/cern.ch/user/p/pivarski/public/scala-2.10.5 |
Spark 1.6.1 | /afs/cern.ch/user/p/pivarski/public/spark-1.6.1-bin-hadoop1 |
To start a Scala prompt with Histogrammar loaded, do the following:
export PATH=/afs/cern.ch/user/p/pivarski/public/scala-2.10.5/bin:$PATH
scala -cp /afs/cern.ch/user/p/pivarski/public/histogrammar-0.7.1.jar
scala> import org.dianahep.histogrammar._
To start a local (non-distributed, testing) Spark session with Histogrammar loaded, do the following:
export PATH=/afs/cern.ch/user/p/pivarski/public/spark-1.6.1-bin-hadoop1/bin:$PATH
spark-shell --jars=/afs/cern.ch/user/p/pivarski/public/histogrammar-0.7.1.jar,/afs/cern.ch/user/p/pivarski/public/histogrammar-sparksql-0.7.1.jar
scala> import org.dianahep.histogrammar._
scala> import org.dianahep.histogrammar.sparksql._
To use Histogrammar in Python, do:
export PYTHONPATH=/afs/cern.ch/user/p/pivarski/public/histogrammar0.7-python2.6:$PYTHONPATH
python
>>> from histogrammar import *
To use Histogrammar in a C++ project, add:
-I/afs/cern.ch/user/p/pivarski/public/include07
to your compiler options and
#include "histogrammar.hpp"
in your code.