Skip to content

Latest commit

 

History

History
120 lines (95 loc) · 3.63 KB

physics-servers.md

File metadata and controls

120 lines (95 loc) · 3.63 KB
title type toc summary
Pre-installed versions on physics servers
default
true
<p>This page points to versions of Histogrammar installed at Fermilab's LPC and CERN's LXPLUS servers. Use this page if you have access to one of these systems.</p>

LPC at Fermilab

If you have access to the LPC at Fermilab, you can run a preinstalled copy of Histogrammar version 0.7.1.

LPC at Fermilab cmslpc-sl6.fnal.gov
for Scala /uscms/home/pivarski/public/histogrammar-0.7.1.jar
for SparkSQL /uscms/home/pivarski/public/histogrammar-sparksql-0.7.1.jar
for Python 2.6 /uscms/home/pivarski/public/histogrammar0.7-python2.6
for C++ /uscms/home/pivarski/public/include07
Scala 2.10.5 /uscms/home/pivarski/public/scala-2.10.5
Spark 1.6.1 /uscms/home/pivarski/public/spark-1.6.1-bin-hadoop1

To start a Scala prompt with Histogrammar loaded, do the following:

export PATH=/uscms/home/pivarski/public/scala-2.10.5/bin:$PATH
scala -cp /uscms/home/pivarski/public/histogrammar-0.7.1.jar
scala> import org.dianahep.histogrammar._

To start a local (non-distributed, testing) Spark session with Histogrammar loaded, do the following:

export PATH=/uscms/home/pivarski/public/spark-1.6.1-bin-hadoop1/bin:$PATH
spark-shell --jars=/uscms/home/pivarski/public/histogrammar-0.7.1.jar,/uscms/home/pivarski/public/histogrammar-sparksql-0.7.1.jar
scala> import org.dianahep.histogrammar._
scala> import org.dianahep.histogrammar.sparksql._

To use Histogrammar in Python, do:

export PYTHONPATH=/uscms/home/pivarski/public/histogrammar0.7-python2.6:$PYTHONPATH
python
>>> from histogrammar import *

To use Histogrammar in a C++ project, add:

-I /uscms/home/pivarski/public/include07

to your compiler options and

#include "histogrammar.hpp"

in your code.

LXPLUS at CERN

If you have access to LXPLUS at CERN, you can run a preinstalled copy of Histogrammar version 0.7.1.

LXPLUS at CERN lxplus.cern.ch
for Scala /afs/cern.ch/user/p/pivarski/public/histogrammar-0.7.1.jar
for SparkSQL /afs/cern.ch/user/p/pivarski/public/histogrammar-sparksql-0.7.1.jar
for Python 2.6 /afs/cern.ch/user/p/pivarski/public/histogrammar0.7-python2.6
for C++ /afs/cern.ch/user/p/pivarski/public/include07
Scala 2.10.5 /afs/cern.ch/user/p/pivarski/public/scala-2.10.5
Spark 1.6.1 /afs/cern.ch/user/p/pivarski/public/spark-1.6.1-bin-hadoop1

To start a Scala prompt with Histogrammar loaded, do the following:

export PATH=/afs/cern.ch/user/p/pivarski/public/scala-2.10.5/bin:$PATH
scala -cp /afs/cern.ch/user/p/pivarski/public/histogrammar-0.7.1.jar
scala> import org.dianahep.histogrammar._

To start a local (non-distributed, testing) Spark session with Histogrammar loaded, do the following:

export PATH=/afs/cern.ch/user/p/pivarski/public/spark-1.6.1-bin-hadoop1/bin:$PATH
spark-shell --jars=/afs/cern.ch/user/p/pivarski/public/histogrammar-0.7.1.jar,/afs/cern.ch/user/p/pivarski/public/histogrammar-sparksql-0.7.1.jar
scala> import org.dianahep.histogrammar._
scala> import org.dianahep.histogrammar.sparksql._

To use Histogrammar in Python, do:

export PYTHONPATH=/afs/cern.ch/user/p/pivarski/public/histogrammar0.7-python2.6:$PYTHONPATH
python
>>> from histogrammar import *

To use Histogrammar in a C++ project, add:

-I/afs/cern.ch/user/p/pivarski/public/include07

to your compiler options and

#include "histogrammar.hpp"

in your code.