This document explains how to build the MPT model using TensorRT-LLM and run on a single GPU and a single node with multiple GPUs.
Currently we use tensorrt_llm.models.GPTLMHeadModel
to build TRT engine for MPT models.
Support for float16, float32 and bfloat16 conversion. Just change data_type
flags to any.
- FP16
- FP8
- INT8 & INT4 Weight-Only
- INT4 AWQ
- FP8 KV CACHE
- Tensor Parallel
- MHA, MQA & GQA
- STRONGLY TYPED
The convert_hf_mpt_to_ft.py
script allows you to convert weights from HF Transformers format to FT format.
python convert_hf_mpt_to_ft.py -i mosaicml/mpt-7b -o ./ft_ckpts/mpt-7b/fp16/ -t float16
python convert_hf_mpt_to_ft.py -i mosaicml/mpt-7b -o ./ft_ckpts/mpt-7b/fp32/ --tensor_parallelism 4 -t float32
--infer_gpu_num 4
is used to convert to FT format with 4-way tensor parallelism
Examples of build invocations:
# Build a single-GPU float16 engine using FT weights.
python3 build.py --model_dir=./ft_ckpts/mpt-7b/fp16/1-gpu \
--max_batch_size 64 \
--use_gpt_attention_plugin \
--use_gemm_plugin \
--output_dir ./trt_engines/mpt-7b/fp16/1-gpu
# Build 4-GPU MPT-7B float32 engines
# Enable several TensorRT-LLM plugins to increase runtime performance. It also helps with build time.
python3 build.py --world_size=4 \
--parallel_build \
--max_batch_size 64 \
--max_input_len 512 \
--max_output_len 64 \
--use_gpt_attention_plugin \
--use_gemm_plugin \
--model_dir ./ft_ckpts/mpt-7b/fp32/4-gpu \
--output_dir=./trt_engines/mpt-7b/fp32/4-gpu
# Generate Smoothquantied weights and scaling factors.
python convert_hf_mpt_to_ft.py -i mosaicml/mpt-7b -o ./ft_ckpts/mpt-7b/sq/ -sq 0.5
# Build smoothquant engine.
python3 build.py --max_batch_size 64 \
--max_input_len 512 \
--max_output_len 64 \
--remove_input_padding \
--enable_context_fmha \
--use_gpt_attention_plugin \
--use_gemm_plugin \
--model_dir ./ft_ckpts/mpt-7b/sq/1-gpu \
--output_dir=./trt_engines/mpt-7b/sq/1-gpu-engine \
--use_smooth_quant \
--per_channel \
--per_token
Examples of build invocations:
# Build INT8 weight-only engine.
python3 build.py --model_dir=./ft_ckpts/mpt-7b/fp16/1-gpu \
--max_batch_size 64 \
--use_weight_only \
--use_gpt_attention_plugin \
--use_gemm_plugin \
--output_dir ./trt_engines/mpt-7b/int8_weight_only/1-gpu
# Build INT4 weight-only engine.
python3 build.py --model_dir=./ft_ckpts/mpt-7b/fp16/1-gpu \
--max_batch_size 64 \
--use_weight_only \
--weight_only_precision int4 \
--use_gpt_attention_plugin \
--use_gemm_plugin \
--output_dir ./trt_engines/mpt-7b/int4_weight_only/1-gpu
First make sure AMMO toolkit is installed (see examples/quantization/README.md)
# RUN ammo
python3 examples/quantization/quantize.py --model_dir .mosaicml/mpt-7b \
--qformat int4_awq \
--calib_size 32 \
--export_path ./
After quantization, mpt_tp1_rank0.npz
file will be generated under export path, then We use --quant_ckpt_path
pass it to build stage.
# Build INT4 AWQ engine
python3 build.py --model_dir=./ft_ckpts/mpt-7b/fp16/1-gpu \
--max_batch_size 64 \
--remove_input_padding \
--enable_context_fmha \
--use_gpt_attention_plugin \
--use_gemm_plugin \
--output_dir ./trt_engines/mpt-7b/int4_awq/1-gpu \
--use_weight_only \
--weight_only_precision int4_awq \
--per_group \
--quant_ckpt_path ./mpt_tp1_rank0.npz
python ../run.py --max_output_len 10 \
--engine_dir ./trt_engines/mpt-7b/fp16/1-gpu/ \
--tokenizer_dir mosaicml/mpt-7b
# Run 4-GPU MPT7B TRT engine on a sample input prompt
mpirun -n 4 --allow-run-as-root \
python ../run.py --max_output_len 10 \
--engine_dir ./trt_engines/mpt-7b/fp32/4-gpu/ \
--tokenizer_dir mosaicml/mpt-7b
Same commands can be changed to convert MPT 30B to TRT LLM format. Below is an example to build MPT30B fp16 4-way tensor parallelized TRT engine
The convert_hf_mpt_to_ft.py
script allows you to convert weights from HF Transformers format to FT format.
python convert_hf_mpt_to_ft.py -i mosaicml/mpt-30b -o ./ft_ckpts/mpt-7b/fp16/ --tensor_parallelism 4 -t float16
--infer_gpu_num 4
is used to convert to FT format with 4-way tensor parallelism
Examples of build invocations:
# Build 4-GPU MPT-30B float16 engines
python3 build.py --world_size=4 \
--parallel_build \
--max_batch_size 64 \
--max_input_len 512 \
--max_output_len 64 \
--use_gpt_attention_plugin \
--use_gemm_plugin \
--model_dir ./ft_ckpts/mpt-30b/fp16/4-gpu \
--output_dir=./trt_engines/mpt-30b/fp16/4-gpu
# Run 4-GPU MPT7B TRT engine on a sample input prompt
mpirun -n 4 --allow-run-as-root \
python ../run.py --max_output_len 10 \
--engine_dir ./trt_engines/mpt-30b/fp16/4-gpu/ \
--tokenizer_dir mosaicml/mpt-30b
Same commands can be changed to convert Replit Code V-1.5 3B to TRT LLM format. Below is an example to build Replit Code V-1.5 3B fp16 2-way tensor parallelized TRT engine.
The convert_hf_mpt_to_ft.py
script allows you to convert weights from HF Transformers format to FT format.
python convert_hf_mpt_to_ft.py -i ./replit-code-v1_5-3b -o ./ft_ckpts/replit-code-v1_5-3b/bf16/ --tensor_parallelism 2 -t bfloat16
--infer_gpu_num 2
is used to convert to FT format with 2-way tensor parallelism
Examples of build invocations:
# Build 2-GPU Replit Code V-1.5 3B bfloat16 engines
python3 build.py --world_size=2 \
--parallel_build \
--max_batch_size 16 \
--max_input_len 512 \
--max_output_len 64 \
--use_gpt_attention_plugin \
--use_gemm_plugin \
--model_dir ./ft_ckpts/replit-code-v1_5-3b/bf16/2-gpu \
--output_dir=./trt_engines/replit-code-v1_5-3b/bf16/2-gpu
Here is the partial output of above command.
[11/15/2023-02:47:50] [TRT] [I] Total Activation Memory: 738233344
[11/15/2023-02:47:51] [TRT] [I] Total Weights Memory: 3523622456
[11/15/2023-02:47:51] [TRT] [I] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +64, now: CPU 8316, GPU 5721 (MiB)
[11/15/2023-02:47:51] [TRT] [I] [MemUsageChange] Init cuDNN: CPU +0, GPU +64, now: CPU 8316, GPU 5785 (MiB)
[11/15/2023-02:47:51] [TRT] [I] [MemUsageStats] Peak memory usage of TRT CPU/GPU memory allocators: CPU 192 MiB, GPU 3361 MiB
[11/15/2023-02:47:51] [TRT] [I] [MemUsageChange] TensorRT-managed allocation in building engine: CPU +0, GPU +3361, now: CPU 0, GPU 3361 (MiB)
[11/15/2023-02:47:51] [TRT] [I] [MemUsageStats] Peak memory usage during Engine building and serialization: CPU: 12851 MiB
[11/15/2023-02:47:51] [TRT-LLM] [I] Total time of building gpt_bfloat16_tp2_rank1.engine: 00:00:04
[11/15/2023-02:47:51] [TRT-LLM] [I] Serializing engine to trt_engines/replit-code-v1_5-3b/bf16/2-gpu/gpt_bfloat16_tp2_rank1.engine...
[11/15/2023-02:48:02] [TRT-LLM] [I] Engine serialized. Total time: 00:00:10
[11/15/2023-02:48:02] [TRT-LLM] [I] Timing cache serialized to model.cache
[11/15/2023-02:48:02] [TRT-LLM] [I] Total time of building all 2 engines: 00:01:21
# Run 2-GPU Replit Code V-1.5 3B TRT engine on a sample input prompt
mpirun -n 2 --allow-run-as-root \
python ../run.py --max_output_len 64 \
--input_text "def fibonacci" \
--engine_dir ./trt_engines/replit-code-v1_5-3b/bf16/2-gpu/ \
--tokenizer_dir ./replit-code-v1_5-3b/
Here is the output of above command.
Input: "def fibonacci"
Output: "(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return fibonacci(n-1) + fibonacci(n-2)
print(fibonacci(10))"
The example below uses the NVIDIA AMMO (AlgorithMic Model Optimization) toolkit for the model quantization process.
First make sure AMMO toolkit is installed (see examples/quantization/README.md)
After successfully running the script, the output should be in .npz format, e.g. quantized_fp8/llama_tp_1_rank0.npz
,
where FP8 scaling factors are stored.
# Quantize MPT 7B into FP8 and export a single-rank checkpoint
python examples/quantization/quantize.py --model_dir .mosaicml/mpt-7b \
--dtype float16 \
--qformat fp8 \
--export_path ./quantized_fp8
# Build MPT 7B TP using binary checkpoint + PTQ scaling factors from the single-rank checkpoint
python build.py --model_dir ft_ckpts/mpt-7b/fp16 \
--quantized_fp8_model_path ./quantized_fp8/mpt_tp1_rank0.npz \
--use_gpt_attention_plugin \
--use_gemm_plugin \
--output_dir trt_engines/mpt-7b/fp8/1-gpu/ \
--remove_input_padding \
--enable_fp8 \
--fp8_kv_cache