-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
492 lines (393 loc) · 17.4 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
import random
import flask
from flask import Flask, request, send_file, jsonify
import cv2
import mediapipe as mp
import numpy as np
import os
import json
from keras.models import load_model
import base64
from retinaface import RetinaFace
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torch import FloatTensor as tensor
# from classify_pytorch import classify_img
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
# class_names = ['0 Opened', '1 Closed']
# model_path = "final_model.h5"
# model = load_model(f"{model_path}", compile=False)
#
# def classify_img(one_eye_img): # input은 한 쪽 눈 이미지
# img = cv2.resize(one_eye_img, (224, 224), interpolation=cv2.INTER_AREA)
# img = np.asarray(img, dtype=np.float32).reshape(1, 224, 224, 3)
#
# img = (img / 127.5) - 1
#
# prediction = model.predict(img)
# index = np.argmax(prediction)
#
# class_name = class_names[index]
# confidence_score = prediction[0][index]
# classified = class_name[2:]
#
# return classified
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(
refine_landmarks=True,
static_image_mode=True,
max_num_faces=1,
)
class CNN(nn.Module):
def __init__(self):
super().__init__()
# 64, 48, 3 -> 32, 24, 16
self.layer1 = nn.Sequential(
torch.nn.Conv2d(3, 16, kernel_size=5, stride=1, padding=2),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=2, stride=2)
)
# 32, 24, 16 -> 16, 12, 32
self.layer2 = nn.Sequential(
torch.nn.Conv2d(16, 64, kernel_size=5, stride=1, padding=2),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=4, stride=4)
)
# # 16, 12, 32 -> 8, 6, 64
# self.layer3 = nn.Sequential(
# torch.nn.Conv2d(32, 64, kernel_size=5, stride=1, padding=2),
# torch.nn.ReLU(),
# torch.nn.MaxPool2d(kernel_size=2, stride=2)
# )
# 8, 6, 64 -> 8*6*64=3072
# 3072 -> 384 -> 48 -> 8 -> 1
self.layer4 = nn.Sequential(
nn.Linear(3072, 300),
nn.ReLU(),
nn.Linear(300, 20),
nn.ReLU(),
nn.Linear(20, 1),
nn.Sigmoid()
)
# self.dropout = nn.Dropout(0.1)
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
# x = self.layer3(x)
x = x.view(x.size(0), -1)
x = self.layer4(x)
return x
model = CNN()
model.load_state_dict(torch.load('model.pth'))
model.eval()
transform=transforms.ToTensor()
def classify_img(img):
input_data=np.array(transform(cv2.resize(img, (64, 48))))
input_data=np.array([input_data])
input_data=tensor(input_data)
result = model(input_data)
return 0 if result[0][0]<1/2 else 1
app = Flask(__name__)
@app.route('/asdf', methods=['GET'])
def main():
return flask.send_file('static/form.html')
@app.route('/overlay', methods=['POST', 'GET'])
def overlay():
if request.method == 'POST':
f = request.files['main']
filepath_main = './save_image/overlay_background.jpg'
f.save(filepath_main)
f = request.files['overlay']
filepath_overlay = './save_image/overlay.jpg'
f.save(filepath_overlay)
image_main = cv2.imread(filepath_main)
image_overlay = cv2.imread(filepath_overlay)
pos_topleft, pos_bottomright = request.form['topleft'], request.form['bottomright']
pos_topleft = tuple(map(int, pos_topleft.split()))
pos_bottomright = tuple(map(int, pos_bottomright.split()))
size = (pos_bottomright[0] - pos_topleft[0], pos_bottomright[1] - pos_topleft[1])
image_overlay = cv2.resize(image_overlay, size)
for i in range(size[0]):
for j in range(size[1]):
image_main[pos_topleft[1] + j][pos_topleft[0] + i] = image_overlay[j][i]
cv2.imwrite('./save_image/result_overlay.jpg', image_main)
return send_file('./save_image/result_overlay.jpg', mimetype='image/jpg')
elif request.method == 'GET':
return send_file('./save_image/result_overlay.jpg', mimetype='image/jpg')
@app.route('/crop', methods=['POST', 'GET'])
def crop():
if request.method == 'POST':
f = request.files['image']
# img_data = base64.b64decode(request.form['image'])
filepath_main = './save_image/crop_image.jpg'
f.save(filepath_main)
# with open(filepath_main, 'wb') as f:
# f.write(img_data)
image = cv2.imread(filepath_main)
pos_topleft, pos_bottomright = request.form['topleft'], request.form['bottomright']
pos_tlx, pos_tly = map(int, pos_topleft.split())
pos_brx, pos_bry = map(int, pos_bottomright.split())
image = image[pos_tly:pos_bry, pos_tlx:pos_brx]
cv2.imwrite('./save_image/result_crop.jpg', image)
return send_file('./save_image/result_crop.jpg', mimetype='image/jpg')
elif request.method == 'GET':
return send_file('./save_image/result_crop.jpg', mimetype='image/jpg')
# 눈 자르는 거 그냥 내가 만들었음
class EyePos:
def __init__(self, size):
self.max_x, self.max_y = 0, 0
self.min_x, self.min_y, _ = size
self.open = True
def addpos(self, pos):
self.max_x = max(self.max_x, pos[0])
self.max_y = max(self.max_y, pos[1])
self.min_x = min(self.min_x, pos[0])
self.min_y = min(self.min_y, pos[1])
def set(self, position, open):
self.min_x, self.min_y, self.max_x, self.max_y = position
self.open = open
def size(self):
return (self.max_x - self.min_x, self.max_y - self.min_y)
def center(self):
return (int((self.max_x + self.min_x) / 2), int((self.max_y + self.min_y) / 2))
def move_center(self, new_center):
center = self.center()
movement = (new_center[0] - center[0], new_center[1] - center[1])
self.min_x += movement[0]
self.min_y += movement[1]
self.max_x += movement[0]
self.max_y += movement[1]
lmindex_lefteye = [464, 453, 452, 451, 450, 449, 448, 261, 446, 342, 445, 444, 443, 442, 441, 413]
lmindex_righteye = [244, 233, 232, 231, 230, 229, 228, 31, 226, 113, 225, 224, 223, 222, 221, 189]
def make_sampleimg(img_path_list, img_json_list):
background_img = cv2.imread(img_path_list[0])
imgRGB = cv2.cvtColor(background_img, cv2.COLOR_BGR2RGB)
img_size = imgRGB.shape
# result = get_face(img_path_list[0])
result=img_json_list[0]
bg_data_closed = []
for i in range(result['people']):
# pos_tlx, pos_tly = righteye.min_x, righteye.min_y
# pos_brx, pos_bry = righteye.max_x, righteye.max_y
# image = background[pos_tly:pos_bry, pos_tlx:pos_brx]
# 모델 돌리기
righteye = EyePos(img_size)
lefteye = EyePos(img_size)
righteye.set(result[f'face{i}']['righteye']['pos'], result[f'face{i}']['righteye']['open'])
lefteye.set(result[f'face{i}']['lefteye']['pos'], result[f'face{i}']['lefteye']['open'])
if not righteye.open:
bg_data_closed.append(righteye)
if not lefteye.open:
bg_data_closed.append(lefteye)
print(bg_data_closed)
for img_path, img_json in zip(img_path_list[1:], img_json_list[1:]):
img = cv2.imread(img_path)
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_size = imgRGB.shape
# result = get_face(img_path)
result=img_json
print(result['people'])
for i in range(result['people']):
righteye = EyePos(img_size)
lefteye = EyePos(img_size)
righteye.set(result[f'face{i}']['righteye']['pos'], result[f'face{i}']['righteye']['open'])
lefteye.set(result[f'face{i}']['lefteye']['pos'], result[f'face{i}']['lefteye']['open'])
for i in range(len(bg_data_closed)):
openedeye = None
if sameeye(bg_data_closed[i], lefteye) and lefteye.open:
openedeye = lefteye
if sameeye(bg_data_closed[i], righteye) and righteye.open:
openedeye = righteye
print(sameeye(bg_data_closed[i], righteye), sameeye(bg_data_closed[i], lefteye))
if openedeye is not None:
tmp_eye = img[openedeye.min_y:openedeye.max_y, openedeye.min_x:openedeye.max_x]
openedeye.move_center(bg_data_closed[i].center())
for ii in range(openedeye.min_x, openedeye.max_x):
for jj in range(openedeye.min_y, openedeye.max_y):
background_img[jj][ii] = tmp_eye[jj - openedeye.min_y][ii - openedeye.min_x]
print(bg_data_closed[i])
return background_img
def get_face(img_path):
img = cv2.imread(img_path)
detect_faces = RetinaFace.detect_faces(img_path)
if detect_faces is None:
return {'people': 0}
try:
data = []
for faceNum in detect_faces.keys():
identity = detect_faces[f'{faceNum}']
facial_area = identity["facial_area"]
eye_landmarks = [identity['landmarks']['right_eye'], identity['landmarks']['left_eye']]
data.append(
(facial_area, *eye_landmarks, (facial_area[2] - facial_area[0], facial_area[3] - facial_area[1])))
senddata = dict()
senddata['people'] = len(data)
for i in range(len(data)):
face=list(map(int, data[i][0]))
face_img=img[face[0]:face[2], face[1]:face[3]]
face_size=(face[2]-face[0], face[3]-face[1])
results=face_mesh.process(face_img)
re_pos=[]
le_pos=[]
if (type(results.multi_face_landmarks) is list):
re, le = EyePos(face_size), EyePos(face_size)
for result in results.multi_face_landmarks:
for id, lm in enumerate(result.landmark):
if id in lmindex_righteye:
re.addpos((int(lm.x*face_size[0]), int(lm.y*face_size[1])))
if id in lmindex_lefteye:
le.addpos((int(lm.x*face_size[0]), int(lm.y*face_size[1])))
re_pos = [face[0] + re.min_x, face[0] + re.max_x, face[1] + re.min_y, face[1] + re.max_y]
le_pos = [face[0] + le.min_x, face[0] + le.max_x, face[1] + le.min_y, face[1] + le.max_y]
else:
re_x, re_y = data[i][1]
le_x, le_y = data[i][2]
size_x, size_y = data[i][3]
re_pos = [int(re_x - size_x / 8), int(re_y - size_y / 16),
int(re_x + size_x / 8), int(re_y + size_y / 16)]
le_pos = [int(le_x - size_x / 8), int(le_y - size_y / 16),
int(le_x + size_x / 8), int(le_y + size_y / 16)]
senddata[f'face{i}'] = {
'face': list(map(int, data[i][0])),
'righteye': {'pos': re_pos, 'open': classify_img(img[re_pos[1]:re_pos[3], re_pos[0]:re_pos[2]]) == 0},
'lefteye': {'pos': le_pos, 'open': classify_img(img[le_pos[1]:le_pos[3], le_pos[0]:le_pos[2]]) == 0}
}
return senddata
except:
print("asdf")
return {'people': 0}
@app.route('/eyepos', methods=['POST', 'GET'])
def eyepos():
if request.method == 'POST':
f = request.files['image']
filepath_main = './save_image/eyepos.jpg'
f.save(filepath_main)
senddata = get_face(filepath_main)
# f.save(filepath_main)
# img = cv2.imread(filepath_main)
# print(img.shape)
# imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# img_size = imgRGB.shape
# results = face_mesh.process(imgRGB)
# data = []
# if results.multi_face_landmarks:
# for result in results.multi_face_landmarks:
# righteye, lefteye, face = EyePos(img_size), EyePos(img_size), EyePos(img_size)
# for lm_ind, lm in enumerate(result.landmark):
# if lm_ind in lmindex_lefteye:
# lefteye.addpos((lm.x, lm.y))
# if lm_ind in lmindex_righteye:
# righteye.addpos((lm.x, lm.y))
# face.addpos((lm.x, lm.y))
# # re_img = imgRGB[righteye.min_x:righteye.max_x, righteye.min_y:righteye.max_y]
# # le_img = imgRGB[lefteye.min_x:lefteye.max_x, lefteye.min_y:lefteye.max_y]
# # print(classify_img(re_img))
# # print(classify_img(le_img))
# # 왜인지는 모르겠지만 이걸 주석처리 안 하면 이미지 받는 부분에서 이상해짐
# data.append((righteye, lefteye, face))
#
# senddata = dict()
# senddata['people'] = len(data)
# for i in range(len(data)):
# senddata[f'face{i}'] = {
# 'face': [int(data[i][2].min_x * img_size[0]),
# int(data[i][2].min_y * img_size[1]),
# int(data[i][2].max_x * img_size[0]),
# int(data[i][2].max_y * img_size[1])],
# 'righteye': {'pos': [int(data[i][0].min_x * img_size[0]),
# int(data[i][0].min_y * img_size[1]),
# int(data[i][0].max_x * img_size[0]),
# int(data[i][0].max_y * img_size[1])], 'open': True},
# 'lefteye': {'pos': [int(data[i][1].min_x * img_size[0]),
# int(data[i][1].min_y * img_size[1]),
# int(data[i][1].max_x * img_size[0]),
# int(data[i][1].max_y * img_size[1])], 'open': True}
# }
return jsonify(senddata)
elif request.method == 'GET':
return send_file('./save_image/eyepos.jpg', mimetype='image/jpg')
def sameeye(eye1: EyePos, eye2: EyePos):
mx1, my1, Mx1, My1 = eye1.min_x, eye1.min_y, eye1.max_x, eye1.max_y
mx2, my2, Mx2, My2 = eye2.min_x, eye2.min_y, eye2.max_x, eye2.max_y
if (mx1 <= mx2 <= Mx1 and my1 <= my2 <= My1) \
or (mx1 <= mx2 <= Mx1 and my1 <= My2 <= My1) \
or (mx1 <= Mx2 <= Mx1 and my1 <= my2 <= My1) \
or (mx1 <= Mx2 <= Mx1 and my1 <= My2 <= My1):
return True
elif (mx2 <= mx1 <= Mx2 and my2 <= my1 <= My2) \
or (mx2 <= mx1 <= Mx2 and my2 <= My1 <= My2) \
or (mx2 <= Mx1 <= Mx2 and my2 <= my1 <= My2) \
or (mx2 <= Mx1 <= Mx2 and my2 <= My1 <= My2):
return True
else:
return False
@app.route('/sampleimg', methods=['POST', 'GET'])
def sampleimg():
if request.method == 'POST':
f = request.files['image1']
filepath_main = './save_image/sample1.jpg'
f.save(filepath_main)
f = request.files['image2']
filepath_main = './save_image/sample2.jpg'
f.save(filepath_main)
f = request.files['image3']
filepath_main = './save_image/sample3.jpg'
f.save(filepath_main)
params = request.form['json']
params = json.loads(params)
result_img = make_sampleimg(
['./save_image/sample1.jpg', './save_image/sample2.jpg', './save_image/sample3.jpg'],
[params[0], params[1], params[2]]
)
cv2.imwrite('./save_image/sample_img.jpg', result_img)
return send_file('./save_image/sample_img.jpg', mimetype='image/jpg')
elif request.method == 'GET':
return send_file('./save_image/sample_img.jpg', mimetype='image/jpg')
@app.route('/rotate', methods=['POST', 'GET'])
def rotate():
if request.method == 'POST':
f = request.files['image']
filepath = './save_image/isopen.jpg'
f.save(filepath)
img = cv2.imread(filepath)
angle = request.form['angle']
img = cv2.rotate(img, int(angle))
cv2.imwrite('./save_image/rotate.jpg', img)
return send_file('./save_image/rotate.jpg', mimetype='image/jpg')
elif request.method == 'GET':
return send_file('./save_image/rotate.jpg', mimetype='image/jpg')
# 눈 떴으면 True, 눈 감았으면 False
@app.route('/isopen', methods=['POST', 'GET'])
def isopen():
if request.method == 'POST':
f = request.files['image']
filepath = './save_image/isopen.jpg'
f.save(filepath)
img = cv2.imread(filepath)
return str(classify_img(img) == 0)
if request.method == 'GET':
return str(None)
@app.route('/changeeye', methods=['POST', 'GET'])
def changeeye():
if request.method == 'POST':
f = request.files['img']
filepath = './save_image/changeeye_img.jpg'
f.save(filepath)
bg_img=cv2.imread(filepath)
f = request.files['eye']
filepath = './save_image/changeeye_eye.jpg'
f.save(filepath)
eye_img=cv2.imread(filepath)
h, w, c = eye_img.shape
pos_center = list(map(int, request.form['center'].split()))
for i in range(w):
for j in range(h):
bg_img[pos_center[1] - h//2 + j][pos_center[0] - w//2 + i] = eye_img[j][i]
cv2.imwrite('./save_image/changeeye_result.jpg', bg_img)
return send_file('./save_image/changeeye_result.jpg', mimetype='image/jpg')
elif request.method == 'GET':
return send_file('./save_image/changeeye_result.jpg', mimetype='image/jpg')
# 정윤이가 만든 거 api로 적용하는 것까지만 하면 되려나
if __name__ == '__main__':
app.run()