-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmc_poly_lj_module.cpp
236 lines (185 loc) · 7.44 KB
/
mc_poly_lj_module.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#define _USE_MATH_DEFINES
#include <iostream>
#include <cmath>
#include <stdio.h>
#include <time.h>
#include <cassert>
#include <numeric>
#include <stdlib.h>
#include <iterator>
#include "./math_module.hpp"
// ------ Routines for MC simulation, polyatomic molecule, LJ atoms --------
// Cutoff distance and force-shift parameters (all private) chosen as per the reference:
// S Mossa, E La Nave, HE Stanley, C Donati, F Sciortino, P Tartaglia, Phys Rev E, 65, 041205 (2002)
int na = 3;
double r_cut = 2.612; // in sigma=1 units, where r_cut = 1.2616 nm, sigma = 0.483 nm
double sr_cut = 1.0/r_cut;
double sr_cut6 = pow(sr_cut,6);
double sr_cut12 = pow(sr_cut6,2);
double lambda1 = 4.0*(7.0*sr_cut6-13.0*sr_cut12);
double lambda2 = -24.0*(sr_cut6-2.0*sr_cut12)*sr_cut;
class PotentialType{
public:
double pot; // = 0.0;
double vir; // = 0.0;
double lap; // = 0.0;
bool ovr; // = false;
};
void introduction(int na,double** db,double diameter){
/* Prints out introductory statements at start of run. */
std::cout << "Lennard-Jones potential" << '\n';
std::cout << "Cut-and-force-shifted) " << '\n';
std::cout << "Diameter, sigma = 1" << '\n';
std::cout << "Well depth, epsilon = 1" << '\n';
printf("%20s %30d \n", "Number of atoms per molecule", na);
std::cout << '\n';
for (size_t i{0}; i<3;++i){
printf("%s %2ld", "Body-fixed atom vector",i+1);
for (size_t j{0}; j<3;++j){
printf("%15.6f ", db[i][j]);
}
std::cout << '\n';
}
std::cout << '\n';
printf("%s %40.6f \n", "Molecular diameter", diameter);
printf("%s %53.6f \n", "r_cut", r_cut);
printf("%s %39.6f \n", "Force-shift lambda1", lambda1);
printf("%s %39.6f \n", "Force-shift lambda2", lambda2);
std::cout << '\n';
}
void conclusion(){
/* Prints out concluding statements at end of run. */
std::cout << "Program ends \n";
std::cout << "\n";
std::cout << "\n";
}
void potential_1 (PotentialType &partial,int mm, double r_cut, double diameter, double* ri, double** ddi, double box, double** r, double*** dd ){
/* partial.pot is the nonbonded cut (not shifted) potential energy of atom ri with a set of other atoms
partial.vir is the corresponding virial of atom ri
partial.ovr is a flag indicating overlap (potential too high) to avoid overflow
If this is True, the values of partial.pot etc should not be used
In general, r & d will be subsets of the complete set of simulation coordinates & bond vectors
and none of their rows should be identical to ri, di */
/* It is assumed that r has been divided by box
Results are in LJ units where sigma = 1, epsilon = 1
Note that this is the force-shifted LJ potential with a linear smoothing term
S Mossa, E La Nave, HE Stanley, C Donati, F Sciortino, P Tartaglia, Phys Rev E, 65, 041205 (2002) */
double rij_sq,sr2,sr6,sr12,pot,vir,lap,rmag,virab;
bool ovr;
double sr2_ovr = 1.77; // Overlap threshold (pot > 100)
double rm_cut_box = ( r_cut + diameter ) / box; // Molecular cutoff in box=1 units
double rm_cut_box_sq = pow(rm_cut_box,2);
double r_cut_sq = pow(r_cut,2);
int ndim = 3;
assert (rm_cut_box<0.5); //rm_cut/box too large
partial.pot = 0.0;
partial.vir = 0.0;
partial.lap = 0.0;
partial.ovr = false;
for (int j{0};j<mm;++j){
double* r_j = new double[ndim]{};
double* rij = new double[ndim]{};
double* rij2 = new double[ndim]{};
for (int i{0};i<ndim;++i)
r_j[i] = r[j][i];
subtract1DArrays(3,ri,r_j,rij); // Separation vector
rint1D(ndim,rij); // Periodic boundary conditions in box=1 units
elementWise1DProduct(3,rij,rij,rij2);
rij_sq = elementSum1D(3,rij2); // Squared separation
if (rij_sq < rm_cut_box_sq){ // Check within cutoff
scalar1DArrayMultip(ndim,box,rij,rij); // Now in sigma=1 units
for (int a{0};a<na;++a){
for (int b{0};b<na;++b){
double* rab = new double[ndim]{};
double* rab2 = new double[ndim]{};
double* fab = new double[ndim]{};
for (int i{0};i<ndim;++i)
rab[i] = rij[i] + ddi[a][i] - dd[j][b][i]; // Atom-atom vector, sigma=1 units
elementWise1DProduct(3,rab,rab,rab2);
double rab_sq = elementSum1D(3,rab2); // Squared atom-atom separation, sigma=1 units
if (rab_sq < r_cut_sq){ // Test within potential cutoff
sr2 = 1.0 / rab_sq; // (sigma/rab)**2
ovr = sr2 > sr2_ovr; // Overlap if too close
if (ovr)
partial.ovr=true;
rmag = sqrt(rab_sq);
sr6 = pow(sr2,3);
sr12 = pow(sr6,2);
pot = 4.0*(sr12-sr6) + lambda1 + lambda2*rmag; // LJ atom-atom pair potential (force-shifted)
virab = 24.0*(2.0*sr12-sr6) - lambda2*rmag; // LJ atom-atom pair virial
scalar1DArrayMultip(ndim,virab*sr2,rab,fab); // LJ atom-atom pair force
elementWise1DProduct(ndim,rij,fab,fab);
vir = elementSum1D(3,fab);
partial.pot = partial.pot + pot;
partial.vir = partial.vir + vir;
partial.ovr = partial.ovr + ovr;
partial.lap = partial.lap + lap;
}
delete [] rab;
delete [] rab2;
delete [] fab;
}
}
}
delete [] rij2;
delete [] rij;
delete [] r_j;
}
// Include numerical factors
partial.vir = partial.vir / 3.0; // divide virial by 3
}
void potential (PotentialType &total, int mm, double box,double r_cut, double diameter, double** r, double*** dd){
/* Takes in box and r & d arrays, and calculates total potential etc.
The results are returned as total, a PotentialType variable.
Actual calculation performed by function potential_1 */
int ndim = 3 ;
total.pot = 0.0;
total.vir = 0.0;
total.lap = 0.0;
total.ovr = false;
double m = mm -1;
for(int i{0};i<mm-1;++i){
PotentialType part;
double* r_i = new double[ndim];
double** dd_i = allocate2DArray(ndim,ndim);
double** r_all = allocate2DArray(m,ndim);
double*** dd_all = allocate3DArray(m,ndim,ndim);
for (int j{0};j<ndim;++j)
r_i[j] = r[i][j];
int ii = i;
for(int j=0;j<m;j++){
ii += 1;
for(int k{0}; k<ndim; ++k){
r_all[j][k] = r[ii][k];
}
}
for (int j{0};j<ndim;++j){
for (int k{0};k<ndim;++k){
dd_i[j][k] = dd[i][j][k];
}
}
ii = i;
for(int j=0;j<m;j++){
ii += 1;
for(int k{0}; k<ndim; ++k){
for (int l{0};l<ndim;++l){
dd_all[j][k][l] = dd[ii][k][l];
}
}
}
potential_1 (part, m,r_cut, diameter,r_i, dd_i, box, r_all, dd_all );
if (part.ovr){
total.ovr = true;
break;
}
total.pot = total.pot + part.pot;
total.vir = total.vir + part.vir;
total.ovr = total.ovr + part.ovr;
total.lap = total.lap + part.lap;
m -= 1;
delete [] r_i;
free3DArray(m+1,ndim,dd_all);
free2DArray(m+1,r_all);
free2DArray(ndim,dd_i);
}
}