-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtrain.py
202 lines (156 loc) · 5.41 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import numpy as np
import cv2
from keras.preprocessing import image
from keras.models import Model
from keras.layers import Input, Conv2D, Deconv2D, Activation, BatchNormalization, add
from keras.callbacks import ModelCheckpoint
SEED = 1
EPOCHS = 25
BATCH_SIZE = 4
LOAD_WEIGHTS = False
IMG_HEIGHT, IMG_WIDTH = 256, 256
def residual_block_downscaling(input_tensor, filters, strides=(2, 2)):
filter1, filter2, filter3 = filters
x = BatchNormalization()(input_tensor)
x = Activation('relu')(x)
x = Conv2D(filter1, (1, 1), strides=strides)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(filter2, (3, 3), padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(filter3, (1, 1))(x)
shortcut = Conv2D(filter3, (1, 1), strides=strides)(input_tensor)
x = add([x, shortcut])
return x
def residual_block_upscaling(input_tensor, filters, strides=(2, 2)):
filter1, filter2, filter3 = filters
x = BatchNormalization()(input_tensor)
x = Activation('relu')(x)
x = Deconv2D(filter1, (1, 1), strides=strides)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(filter2, (3, 3), padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(filter3, (1, 1))(x)
shortcut = Deconv2D(filter3, (1, 1), strides=strides)(input_tensor)
x = add([x, shortcut])
return x
def residual_block(input_tensor, filters, shortcut_conv=False):
filter1, filter2, filter3 = filters
x = BatchNormalization()(input_tensor)
x = Activation('relu')(x)
x = Conv2D(filter1, (1, 1))(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(filter2, (3, 3), padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(filter3, (1, 1))(x)
if shortcut_conv:
shortcut = Conv2D(filter3, (1, 1))(input_tensor)
x = add([x, shortcut])
else:
x = add([x, input_tensor])
return x
inputs = Input((None, None, 1))
x = residual_block(inputs, (8, 8, 32), True)
x = residual_block(x, (8, 8, 32))
x = residual_block(x, (8, 8, 32))
d1 = residual_block(x, (8, 8, 32))
x = residual_block_downscaling(d1, (16, 16, 64))
x = residual_block(x, (16, 16, 64))
x = residual_block(x, (16, 16, 64))
x = residual_block(x, (16, 16, 64))
x = residual_block(x, (16, 16, 64))
d2 = residual_block(x, (16, 16, 64))
x = residual_block_downscaling(d2, (32, 32, 128))
x = residual_block(x, (32, 32, 128))
x = residual_block(x, (32, 32, 128))
x = residual_block(x, (32, 32, 128))
x = residual_block(x, (32, 32, 128))
x = residual_block(x, (32, 32, 128))
x = residual_block(x, (32, 32, 128))
x = residual_block(x, (32, 32, 128))
d3 = residual_block(x, (32, 32, 128))
x = residual_block_downscaling(d3, (64, 64, 256))
x = residual_block(x, (64, 64, 256))
x = residual_block(x, (64, 64, 256))
x = residual_block(x, (64, 64, 256))
x = residual_block(x, (64, 64, 256))
x = residual_block(x, (64, 64, 256))
x = residual_block(x, (64, 64, 256))
x = residual_block(x, (64, 64, 256))
x = residual_block(x, (64, 64, 256))
x = residual_block(x, (64, 64, 256))
x = residual_block(x, (64, 64, 256))
x = residual_block(x, (64, 64, 256))
x = residual_block_upscaling(x, (32, 32, 128))
x = residual_block(x, (32, 32, 128))
x = residual_block(x, (32, 32, 128))
x = residual_block(x, (32, 32, 128))
x = residual_block(x, (32, 32, 128))
x = residual_block(x, (32, 32, 128))
x = residual_block(x, (32, 32, 128))
x = residual_block(x, (32, 32, 128))
u1 = residual_block(x, (32, 32, 128))
s1 = add([u1, d3])
x = residual_block_upscaling(s1, (16, 16, 64))
x = residual_block(x, (16, 16, 64))
x = residual_block(x, (16, 16, 64))
x = residual_block(x, (16, 16, 64))
x = residual_block(x, (16, 16, 64))
u2 = residual_block(x, (16, 16, 64))
s2 = add([u2, d2])
x = residual_block_upscaling(s2, (8, 8, 32))
x = residual_block(x, (8, 8, 32))
x = residual_block(x, (8, 8, 32))
u3 = residual_block(x, (8, 8, 32))
s3 = add([u3, d1])
x = residual_block(s3, (4, 4, 16), True)
x = residual_block(x, (4, 4, 16))
x = residual_block(x, (4, 4, 16))
outputs = residual_block(x, (1, 1, 1), True)
model = Model(inputs=inputs, outputs=outputs)
model.summary()
if LOAD_WEIGHTS:
model.load_weights('./weight/model.h5')
model.compile(loss='MSE', optimizer='Adam')
datagen = image.ImageDataGenerator(
rescale=1 / 255.,
rotation_range=180,
width_shift_range=0.5,
height_shift_range=0.5,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
vertical_flip=True,
fill_mode='reflect'
)
raw_generator = datagen.flow_from_directory(
'./data/raw',
target_size=(IMG_HEIGHT, IMG_WIDTH),
color_mode='grayscale',
seed=SEED,
class_mode=None,
batch_size=BATCH_SIZE,
shuffle=True
)
cs_generator = datagen.flow_from_directory(
'./data/contour',
target_size=(IMG_HEIGHT, IMG_WIDTH),
color_mode='grayscale',
seed=SEED,
class_mode=None,
batch_size=BATCH_SIZE,
shuffle=True
)
checkpointer = ModelCheckpoint(filepath='./weight/model.h5', verbose=1)
history = model.fit_generator(
zip(raw_generator, cs_generator),
steps_per_epoch=512 // BATCH_SIZE,
epochs=EPOCHS,
callbacks=[checkpointer]
)
model.save('./weight/model_final.h5')