forked from qwerasdf887/TF2_YOLOv4
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
115 lines (100 loc) · 4.21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
import tensorflow_addons as tfa
from tensorflow.keras.utils import Sequence
import numpy as np
import cv2
from model.models import creat_CSPYOLO, load_weights
from model.loss import yolo_loss
from model.load_xml_data import load_data
from model.utils import preprocess_true_boxes
import os
#from tensorflow.keras.mixed_precision import experimental as mixed_precision
#設定為float16
#policy = mixed_precision.Policy('mixed_float16')
#mixed_precision.set_policy(policy)
train_default = {'anchors': [[12, 16], [19, 36], [40, 28],
[36, 75], [76, 55], [72, 146],
[142, 110], [192, 243], [459, 401]],
'anchors_mask': [[0, 1, 2], [3, 4, 5], [6, 7, 8]],
'dropblock': [False, True, True, True, True], #分別對應每個residual block後是否加入dropblock
'image_shape': (608, 608),
'num_classes': 5,
'score_threshold': 0.6,
'iou_threshold': 0.3,
'batch_size': 2,
'use_pretrain': True,
'drop_rate' : 0.2,
'block_size' : 3
}
#default aug args:
default_aug = {'noise_prob': 0.1,
'gasuss_mean': 0,
'gasuss_var': 0.001,
'rand_hug': 30,
'rand_saturation':30,
'rand_light': 30,
'rot_angle': 15,
'bordervalue': (127, 127, 127),
'zoom_out_value': 0.7,
'blur_kernel': (5, 5),
'output_shape': (608, 608),
'take_value' : 5
}
#讀取類別,回傳類別List
def get_classes(classes_path):
with open(classes_path) as f:
class_name = f.readlines()
class_name = [c.strip() for c in class_name]
return class_name
class img_gen(Sequence):
def __init__(self, xml_name, ann_path, classes_name, aug_dict, model_dict):
self.xml_name = xml_name
self.ann_path = ann_path
self.batch = model_dict['batch_size']
self.cls_name = classes_name
self.aug_dict = aug_dict
self.model_dict = model_dict
def __len__(self):
return int(np.ceil(len(self.xml_name) / self.batch))
def __getitem__(self, idx):
if idx == 0:
np.random.shuffle(self.xml_name)
image_data = []
y_true = []
batch_name = self.xml_name[idx * self.batch: (idx + 1) * self.batch]
for name in batch_name:
path = self.ann_path + name
img, loc = load_data(path, self.cls_name, **self.aug_dict)
boxes = preprocess_true_boxes(loc, **self.model_dict)
image_data.append(img)
y_true.append(boxes)
image_data = (np.array(image_data) / 255).astype(np.float32)
y_true = np.array(y_true)
return image_data, y_true
if __name__ == "__main__":
model = creat_CSPYOLO(**train_default)
if train_default['use_pretrain']:
custom = False if train_default['num_classes'] == 80 else True
load_weights(model, './yolov4.weights', custom_cls=custom)
model.summary()
annotation_path = 'path'
log_dir = 'path'
classes_path = 'path'
class_name = get_classes(classes_path)
xmls = os.listdir(annotation_path)
total_train = len(xmls)
callbacks = [tf.keras.callbacks.ModelCheckpoint(filepath= log_dir + 'best_loss.h5',
save_best_only=True,
save_weights_only=True,
monitor='loss',
verbose=1)]
opt = tf.keras.optimizers.Adam(learning_rate=0.001)
opt = tfa.optimizers.MovingAverage(opt)
model.compile(optimizer=opt, loss=yolo_loss)
model.fit(img_gen(xmls, annotation_path, class_name, default_aug, train_default),
steps_per_epoch= np.ceil(total_train / train_default['batch_size']),
callbacks=callbacks, epochs=200)
model.save_weights(log_dir + 'final_yolov4.h5')