-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSimilarity Measurement.html
335 lines (269 loc) · 18.7 KB
/
Similarity Measurement.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
<!DOCTYPE html>
<html>
<head>
<title>Similarity Measurement</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<script type="text/x-mathjax-config">
MathJax.Hub.Config({"extensions":["tex2jax.js"],"jax":["input/TeX","output/HTML-CSS"],"messageStyle":"none","tex2jax":{"processEnvironments":false,"processEscapes":true,"inlineMath":[["$","$"],["\\(","\\)"]],"displayMath":[["$$","$$"],["\\[","\\]"]]},"TeX":{"extensions":["AMSmath.js","AMSsymbols.js","noErrors.js","noUndefined.js"]},"HTML-CSS":{"availableFonts":["TeX"]}});
</script>
<script type="text/javascript" async src="file:///C:\Users\Administrator\.vscode\extensions\shd101wyy.markdown-preview-enhanced-0.3.1\node_modules\@shd101wyy\mume\dependencies\mathjax\MathJax.js"></script>
<style>
/**
* prism.js Github theme based on GitHub's theme.
* @author Sam Clarke
*/
code[class*="language-"],
pre[class*="language-"] {
color: #333;
background: none;
font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace;
text-align: left;
white-space: pre;
word-spacing: normal;
word-break: normal;
word-wrap: normal;
line-height: 1.4;
-moz-tab-size: 8;
-o-tab-size: 8;
tab-size: 8;
-webkit-hyphens: none;
-moz-hyphens: none;
-ms-hyphens: none;
hyphens: none;
}
/* Code blocks */
pre[class*="language-"] {
padding: .8em;
overflow: auto;
/* border: 1px solid #ddd; */
border-radius: 3px;
/* background: #fff; */
background: #f5f5f5;
}
/* Inline code */
:not(pre) > code[class*="language-"] {
padding: .1em;
border-radius: .3em;
white-space: normal;
background: #f5f5f5;
}
.token.comment,
.token.blockquote {
color: #969896;
}
.token.cdata {
color: #183691;
}
.token.doctype,
.token.punctuation,
.token.variable,
.token.macro.property {
color: #333;
}
.token.operator,
.token.important,
.token.keyword,
.token.rule,
.token.builtin {
color: #a71d5d;
}
.token.string,
.token.url,
.token.regex,
.token.attr-value {
color: #183691;
}
.token.property,
.token.number,
.token.boolean,
.token.entity,
.token.atrule,
.token.constant,
.token.symbol,
.token.command,
.token.code {
color: #0086b3;
}
.token.tag,
.token.selector,
.token.prolog {
color: #63a35c;
}
.token.function,
.token.namespace,
.token.pseudo-element,
.token.class,
.token.class-name,
.token.pseudo-class,
.token.id,
.token.url-reference .token.variable,
.token.attr-name {
color: #795da3;
}
.token.entity {
cursor: help;
}
.token.title,
.token.title .token.punctuation {
font-weight: bold;
color: #1d3e81;
}
.token.list {
color: #ed6a43;
}
.token.inserted {
background-color: #eaffea;
color: #55a532;
}
.token.deleted {
background-color: #ffecec;
color: #bd2c00;
}
.token.bold {
font-weight: bold;
}
.token.italic {
font-style: italic;
}
/* JSON */
.language-json .token.property {
color: #183691;
}
.language-markup .token.tag .token.punctuation {
color: #333;
}
/* CSS */
code.language-css,
.language-css .token.function {
color: #0086b3;
}
/* YAML */
.language-yaml .token.atrule {
color: #63a35c;
}
code.language-yaml {
color: #183691;
}
/* Ruby */
.language-ruby .token.function {
color: #333;
}
/* Markdown */
.language-markdown .token.url {
color: #795da3;
}
/* Makefile */
.language-makefile .token.symbol {
color: #795da3;
}
.language-makefile .token.variable {
color: #183691;
}
.language-makefile .token.builtin {
color: #0086b3;
}
/* Bash */
.language-bash .token.keyword {
color: #0086b3;
}html body{font-family:"Helvetica Neue",Helvetica,"Segoe UI",Arial,freesans,sans-serif;font-size:16px;line-height:1.6;color:#333;background-color:#fff;overflow:initial;box-sizing:border-box;word-wrap:break-word}html body>:first-child{margin-top:0}html body h1,html body h2,html body h3,html body h4,html body h5,html body h6{line-height:1.2;margin-top:1em;margin-bottom:16px;color:#000}html body h1{font-size:2.25em;font-weight:300;padding-bottom:.3em}html body h2{font-size:1.75em;font-weight:400;padding-bottom:.3em}html body h3{font-size:1.5em;font-weight:500}html body h4{font-size:1.25em;font-weight:600}html body h5{font-size:1.1em;font-weight:600}html body h6{font-size:1em;font-weight:600}html body h1,html body h2,html body h3,html body h4,html body h5{font-weight:600}html body h5{font-size:1em}html body h6{color:#5c5c5c}html body strong{color:#000}html body del{color:#5c5c5c}html body a:not([href]){color:inherit;text-decoration:none}html body a{color:#08c;text-decoration:none}html body a:hover{color:#00a3f5;text-decoration:none}html body img{max-width:100%}html body>p{margin-top:0;margin-bottom:16px;word-wrap:break-word}html body>ul,html body>ol{margin-bottom:16px}html body ul,html body ol{padding-left:2em}html body ul.no-list,html body ol.no-list{padding:0;list-style-type:none}html body ul ul,html body ul ol,html body ol ol,html body ol ul{margin-top:0;margin-bottom:0}html body li{margin-bottom:0}html body li.task-list-item{list-style:none}html body li>p{margin-top:0;margin-bottom:0}html body .task-list-item-checkbox{margin:0 .2em .25em -1.8em;vertical-align:middle}html body .task-list-item-checkbox:hover{cursor:pointer}html body blockquote{margin:16px 0;font-size:inherit;padding:0 15px;color:#5c5c5c;border-left:4px solid #d6d6d6}html body blockquote>:first-child{margin-top:0}html body blockquote>:last-child{margin-bottom:0}html body hr{height:4px;margin:32px 0;background-color:#d6d6d6;border:0 none}html body table{margin:10px 0 15px 0;border-collapse:collapse;border-spacing:0;display:block;width:100%;overflow:auto;word-break:normal;word-break:keep-all}html body table th{font-weight:bold;color:#000}html body table td,html body table th{border:1px solid #d6d6d6;padding:6px 13px}html body dl{padding:0}html body dl dt{padding:0;margin-top:16px;font-size:1em;font-style:italic;font-weight:bold}html body dl dd{padding:0 16px;margin-bottom:16px}html body code{font-family:Menlo,Monaco,Consolas,'Courier New',monospace;font-size:.85em !important;color:#000;background-color:#f0f0f0;border-radius:3px;padding:.2em 0}html body code::before,html body code::after{letter-spacing:-0.2em;content:"\00a0"}html body pre>code{padding:0;margin:0;font-size:.85em !important;word-break:normal;white-space:pre;background:transparent;border:0}html body .highlight{margin-bottom:16px}html body .highlight pre,html body pre{padding:1em;overflow:auto;font-size:.85em !important;line-height:1.45;border:#d6d6d6;border-radius:3px}html body .highlight pre{margin-bottom:0;word-break:normal}html body pre code,html body pre tt{display:inline;max-width:initial;padding:0;margin:0;overflow:initial;line-height:inherit;word-wrap:normal;background-color:transparent;border:0}html body pre code:before,html body pre tt:before,html body pre code:after,html body pre tt:after{content:normal}html body p,html body blockquote,html body ul,html body ol,html body dl,html body pre{margin-top:0;margin-bottom:16px}html body kbd{color:#000;border:1px solid #d6d6d6;border-bottom:2px solid #c7c7c7;padding:2px 4px;background-color:#f0f0f0;border-radius:3px}@media print{html body{background-color:#fff}html body h1,html body h2,html body h3,html body h4,html body h5,html body h6{color:#000;page-break-after:avoid}html body blockquote{color:#5c5c5c}html body pre{page-break-inside:avoid}html body table{display:table}html body img{display:block;max-width:100%;max-height:100%}html body pre,html body code{word-wrap:break-word;white-space:pre}}.markdown-preview{width:100%;height:100%;box-sizing:border-box}.markdown-preview .pagebreak,.markdown-preview .newpage{page-break-before:always}.markdown-preview pre.line-numbers{position:relative;padding-left:3.8em;counter-reset:linenumber}.markdown-preview pre.line-numbers>code{position:relative}.markdown-preview pre.line-numbers .line-numbers-rows{position:absolute;pointer-events:none;top:1em;font-size:100%;left:0;width:3em;letter-spacing:-1px;border-right:1px solid #999;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none}.markdown-preview pre.line-numbers .line-numbers-rows>span{pointer-events:none;display:block;counter-increment:linenumber}.markdown-preview pre.line-numbers .line-numbers-rows>span:before{content:counter(linenumber);color:#999;display:block;padding-right:.8em;text-align:right}.markdown-preview .mathjax-exps .MathJax_Display{text-align:center !important}.markdown-preview:not([for="preview"]) .code-chunk .btn-group{display:none}.markdown-preview:not([for="preview"]) .code-chunk .status{display:none}.markdown-preview:not([for="preview"]) .code-chunk .output-div{margin-bottom:16px}.scrollbar-style::-webkit-scrollbar{width:8px}.scrollbar-style::-webkit-scrollbar-track{border-radius:10px;background-color:transparent}.scrollbar-style::-webkit-scrollbar-thumb{border-radius:5px;background-color:rgba(150,150,150,0.66);border:4px solid rgba(150,150,150,0.66);background-clip:content-box}html body[for="html-export"]:not([data-presentation-mode]){position:relative;width:100%;height:100%;top:0;left:0;margin:0;padding:0;overflow:auto}html body[for="html-export"]:not([data-presentation-mode]) .markdown-preview{position:relative;top:0}@media screen and (min-width:914px){html body[for="html-export"]:not([data-presentation-mode]) .markdown-preview{padding:2em calc(50% - 457px)}}@media screen and (max-width:914px){html body[for="html-export"]:not([data-presentation-mode]) .markdown-preview{padding:2em}}@media screen and (max-width:450px){html body[for="html-export"]:not([data-presentation-mode]) .markdown-preview{font-size:14px !important;padding:1em}}@media print{html body[for="html-export"]:not([data-presentation-mode]) #sidebar-toc-btn{display:none}}html body[for="html-export"]:not([data-presentation-mode]) #sidebar-toc-btn{position:fixed;bottom:8px;left:8px;font-size:28px;cursor:pointer;color:inherit;z-index:99;width:32px;text-align:center;opacity:.4}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] #sidebar-toc-btn{opacity:1}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc{position:fixed;top:0;left:0;width:300px;height:100%;padding:32px 0 48px 0;font-size:14px;box-shadow:0 0 4px rgba(150,150,150,0.33);box-sizing:border-box;overflow:auto;background-color:inherit}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc::-webkit-scrollbar{width:8px}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc::-webkit-scrollbar-track{border-radius:10px;background-color:transparent}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc::-webkit-scrollbar-thumb{border-radius:5px;background-color:rgba(150,150,150,0.66);border:4px solid rgba(150,150,150,0.66);background-clip:content-box}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc a{text-decoration:none}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc ul{padding:0 1.6em;margin-top:.8em}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc li{margin-bottom:.8em}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc ul{list-style-type:none}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .markdown-preview{left:300px;width:calc(100% - 300px);padding:2em calc(50% - 457px - 150px);margin:0;box-sizing:border-box}@media screen and (max-width:1274px){html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .markdown-preview{padding:2em}}@media screen and (max-width:450px){html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .markdown-preview{width:100%}}html body[for="html-export"]:not([data-presentation-mode]):not([html-show-sidebar-toc]) .markdown-preview{left:50%;transform:translateX(-50%)}html body[for="html-export"]:not([data-presentation-mode]):not([html-show-sidebar-toc]) .md-sidebar-toc{display:none}
</style>
</head>
<body for="html-export">
<div class="mume markdown-preview ">
<h2 class="mume-header" id="%E4%BC%B0%E7%AE%97%E4%B8%8D%E5%90%8C%E6%A0%B7%E6%9C%AC%E4%B9%8B%E9%97%B4%E7%9A%84%E7%9B%B8%E4%BC%BC%E6%80%A7%E5%BA%A6%E9%87%8Fsimilarity-measurement">估算不同样本之间的相似性度量(Similarity Measurement)</h2>
<h4 class="mume-header" id="1-euclidean-distance%E6%AC%A7%E6%B0%8F%E8%B7%9D%E7%A6%BB">1. Euclidean Distance(欧氏距离)</h4>
<ul>
<li><span class="mathjax-exps">$d_{12} = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$</span></li>
</ul>
<h4 class="mume-header" id="2-manhattancity-block-distance%E6%9B%BC%E5%93%88%E9%A1%BF%E8%B7%9D%E7%A6%BB">2. Manhattan/City Block Distance(曼哈顿距离)</h4>
<ul>
<li><span class="mathjax-exps">$d_{12} = |x_1-x_2|+|y_1-y_2|$</span></li>
</ul>
<h4 class="mume-header" id="3-chebyshev-distance%E5%88%87%E6%AF%94%E9%9B%AA%E5%A4%AB%E8%B7%9D%E7%A6%BB">3. Chebyshev Distance(切比雪夫距离)</h4>
<ul>
<li><span class="mathjax-exps">$d_{12} = max(|x_1-x_2|,|y_1-y_2|)$</span></li>
</ul>
<h4 class="mume-header" id="4-minkowski-distance%E9%97%B5%E5%8F%AF%E5%A4%AB%E6%96%AF%E5%9F%BA%E8%B7%9D%E7%A6%BB">4. Minkowski Distance(闵可夫斯基距离)</h4>
<ul>
<li><span class="mathjax-exps">$d_{12} = \sqrt[p]{\sum^n_{k=1}|x_{1k}-x_{2k}|^p}$</span></li>
<li>p=1,Manhattan;p=2,Euclidean;p=<span class="mathjax-exps">$\infty$</span>,Chebyshev;</li>
</ul>
<h4 class="mume-header" id="5-standardized-euclidean-distance%E6%A0%87%E5%87%86%E5%8C%96%E6%AC%A7%E6%B0%8F%E8%B7%9D%E7%A6%BB">5. Standardized Euclidean distance(标准化欧氏距离)</h4>
<ul>
<li><span class="mathjax-exps">$d_{12} = \sqrt{\sum^n_{k=1}(\frac{x_{1k}-x_{2k}}{S_k})^2}$</span></li>
</ul>
<h4 class="mume-header" id="6-mahalanobis-distance%E9%A9%AC%E6%B0%8F%E8%B7%9D%E7%A6%BB">6. Mahalanobis Distance(马氏距离)</h4>
<ul>
<li><span class="mathjax-exps">$d(x) = \sqrt{(x-\mu)^TS^{-1}(x-\mu)}$</span></li>
<li><span class="mathjax-exps">$d(x_i,x_j) = \sqrt{(x_i-x_j)^TS^{-1}(x_i-x{_j})}$</span></li>
<li>S为协方差矩阵,<span class="mathjax-exps">$\mu$</span>为均值</li>
</ul>
<h4 class="mume-header" id="7-cosine%E5%A4%B9%E8%A7%92%E4%BD%99%E5%BC%A6">7. Cosine(夹角余弦)</h4>
<ul>
<li><span class="mathjax-exps">$cos\theta = \frac{x_1x_2+y_1y_2}{\sqrt{x_1^2+y_1^2}\sqrt{x_2^2+y_2^2}}$</span></li>
<li>余弦取值范围为[-1,1]</li>
</ul>
<h4 class="mume-header" id="8-hamming-distance%E6%B1%89%E6%98%8E%E8%B7%9D%E7%A6%BB">8. Hamming distance(汉明距离)</h4>
<ul>
<li>两个等长字符串s1与s2之间的汉明距离定义为将其中一个变为另外一个所需要作的最小替换次数</li>
</ul>
<h4 class="mume-header" id="9-jaccard-similarity-coefficient%E6%9D%B0%E5%8D%A1%E5%BE%B7%E8%B7%9D%E7%A6%BB-%E6%9D%B0%E5%8D%A1%E5%BE%B7%E7%9B%B8%E4%BC%BC%E7%B3%BB%E6%95%B0">9. Jaccard similarity coefficient(杰卡德距离 & 杰卡德相似系数)</h4>
<ul>
<li><span class="mathjax-exps">$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$</span></li>
<li><span class="mathjax-exps">$J_{\sigma}(A,B) = 1-J(A,B)$</span></li>
<li>杰卡德距离用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度,用在衡量样本的相似度上</li>
</ul>
<h4 class="mume-header" id="10-pelson-correlation-coefficient%E7%9A%AE%E5%B0%94%E9%80%8A%E7%9B%B8%E5%85%B3%E7%B3%BB%E6%95%B0-%E7%9B%B8%E5%85%B3%E8%B7%9D%E7%A6%BB">10. Pelson Correlation coefficient(皮尔逊相关系数 & 相关距离)</h4>
<ul>
<li><span class="mathjax-exps">$\rho_{xy}= \frac{Cov(x,y)}{\sqrt{D(x)}\sqrt{D(y)}}$</span></li>
<li><span class="mathjax-exps">$Cov(x,y) = E((x-Ex)(y-Ey))$</span></li>
<li><span class="mathjax-exps">$D_{xy} = 1-\rho_{xy}$</span></li>
</ul>
<h4 class="mume-header" id="11-information-entropy%E4%BF%A1%E6%81%AF%E7%86%B5">11. Information Entropy信息熵</h4>
<ul>
<li><span class="mathjax-exps">$Entropy(x) =\sum^n_{i=1}-P_ilog_2P_i$</span></li>
</ul>
</div>
<div class="md-sidebar-toc"><ul>
<li><a href="#%E4%BC%B0%E7%AE%97%E4%B8%8D%E5%90%8C%E6%A0%B7%E6%9C%AC%E4%B9%8B%E9%97%B4%E7%9A%84%E7%9B%B8%E4%BC%BC%E6%80%A7%E5%BA%A6%E9%87%8Fsimilarity-measurement">估算不同样本之间的相似性度量(Similarity Measurement)</a><br>
* <a href="#1-euclidean-distance%E6%AC%A7%E6%B0%8F%E8%B7%9D%E7%A6%BB">1. Euclidean Distance(欧氏距离)</a><br>
* <a href="#2-manhattancity-block-distance%E6%9B%BC%E5%93%88%E9%A1%BF%E8%B7%9D%E7%A6%BB">2. Manhattan/City Block Distance(曼哈顿距离)</a><br>
* <a href="#3-chebyshev-distance%E5%88%87%E6%AF%94%E9%9B%AA%E5%A4%AB%E8%B7%9D%E7%A6%BB">3. Chebyshev Distance(切比雪夫距离)</a><br>
* <a href="#4-minkowski-distance%E9%97%B5%E5%8F%AF%E5%A4%AB%E6%96%AF%E5%9F%BA%E8%B7%9D%E7%A6%BB">4. Minkowski Distance(闵可夫斯基距离)</a><br>
* <a href="#5-standardized-euclidean-distance%E6%A0%87%E5%87%86%E5%8C%96%E6%AC%A7%E6%B0%8F%E8%B7%9D%E7%A6%BB">5. Standardized Euclidean distance(标准化欧氏距离)</a><br>
* <a href="#6-mahalanobis-distance%E9%A9%AC%E6%B0%8F%E8%B7%9D%E7%A6%BB">6. Mahalanobis Distance(马氏距离)</a><br>
* <a href="#7-cosine%E5%A4%B9%E8%A7%92%E4%BD%99%E5%BC%A6">7. Cosine(夹角余弦)</a><br>
* <a href="#8-hamming-distance%E6%B1%89%E6%98%8E%E8%B7%9D%E7%A6%BB">8. Hamming distance(汉明距离)</a><br>
* <a href="#9-jaccard-similarity-coefficient%E6%9D%B0%E5%8D%A1%E5%BE%B7%E8%B7%9D%E7%A6%BB-%E6%9D%B0%E5%8D%A1%E5%BE%B7%E7%9B%B8%E4%BC%BC%E7%B3%BB%E6%95%B0">9. Jaccard similarity coefficient(杰卡德距离 & 杰卡德相似系数)</a><br>
* <a href="#10-pelson-correlation-coefficient%E7%9A%AE%E5%B0%94%E9%80%8A%E7%9B%B8%E5%85%B3%E7%B3%BB%E6%95%B0-%E7%9B%B8%E5%85%B3%E8%B7%9D%E7%A6%BB">10. Pelson Correlation coefficient(皮尔逊相关系数 & 相关距离)</a><br>
* <a href="#11-information-entropy%E4%BF%A1%E6%81%AF%E7%86%B5">11. Information Entropy信息熵</a></li>
</ul>
</div>
<a id="sidebar-toc-btn">≡</a>
</body>
<script>
(function bindTaskListEvent() {
var taskListItemCheckboxes = document.body.getElementsByClassName('task-list-item-checkbox')
for (var i = 0; i < taskListItemCheckboxes.length; i++) {
var checkbox = taskListItemCheckboxes[i]
var li = checkbox.parentElement
if (li.tagName !== 'LI') li = li.parentElement
if (li.tagName === 'LI') {
li.classList.add('task-list-item')
}
}
}())
</script>
<script>
var sidebarTOCBtn = document.getElementById('sidebar-toc-btn')
sidebarTOCBtn.addEventListener('click', function(event) {
event.stopPropagation()
if (document.body.hasAttribute('html-show-sidebar-toc')) {
document.body.removeAttribute('html-show-sidebar-toc')
} else {
document.body.setAttribute('html-show-sidebar-toc', true)
}
})
</script>
</html>