-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlemmas-subst-type.agda
314 lines (305 loc) · 13.4 KB
/
lemmas-subst-type.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
open import List
open import Nat
open import Prelude
open import binders-disjointness
open import binders-disjoint-symmetric
open import binders-uniqueness
open import constraints-core
open import contexts
open import core
open import dynamics-core
open import exchange
open import freshness
open import freshness-decidable
open import hole-binders-disjoint-symmetric
open import lemmas-contexts
open import lemmas-freshness
open import lemmas-subst-disjointness
open import lemmas-subst-list
open import lemmas-subst-result
open import lemmas-subst-satisfy
open import patterns-core
open import result-judgements
open import statics-core
open import type-assignment-unicity
open import weakening
-- substituting a variable for an expression
-- of the same type does not change the type
-- of the resulting term
module lemmas-subst-type where
-- quick lemma showing that substituing into an erasure
-- behaves as expected
subst-erase : ∀{rs-pre r rs-post rs x e2} →
erase-r (rs-pre / r / rs-post) rs →
erase-r ([ e2 / x ]zrs (rs-pre / r / rs-post))
([ e2 / x ]rs rs)
subst-erase ERZPre = ERZPre
subst-erase (ERNZPre er) = ERNZPre (subst-erase er)
-- substitutions do no affect the rule typing
-- judgement which does not track target types.
-- this resultis basically immediate because this rule typing
-- judgement only actually looks at patterns, not the type of
-- any expression
subst-type-rs-no-target : ∀{Δp rs τ ξ x e2} →
Δp ⊢ rs ::s τ [ ξ ] →
Δp ⊢ [ e2 / x ]rs rs ::s τ [ ξ ]
subst-type-rs-no-target {x = x} (RTOneRule {p = p} pt)
with unbound-in-p-dec x p
... | Inl ub = RTOneRule pt
... | Inr ¬ub = RTOneRule pt
subst-type-rs-no-target {x = x} (RTRules {p = p} pt rst)
with unbound-in-p-dec x p
... | Inl ub =
RTRules pt (subst-type-rs-no-target rst)
... | Inr ¬ub =
RTRules pt (subst-type-rs-no-target rst)
-- same as the above, but tracking nonredundancy
subst-type-rs-nonredundant : ∀{Δp rs τ ξpre ξ x e2} →
Δp ⊢ rs ::s τ [ ξpre nr/ ξ ] →
Δp ⊢ [ e2 / x ]rs rs ::s τ [ ξpre nr/ ξ ]
subst-type-rs-nonredundant {x = x} (RTOneRule {p = p} pt ¬red)
with unbound-in-p-dec x p
... | Inl ub = RTOneRule pt ¬red
... | Inr ¬ub = RTOneRule pt ¬red
subst-type-rs-nonredundant {x = x} (RTRules {p = p} pt ¬red rst)
with unbound-in-p-dec x p
... | Inl ub =
RTRules pt ¬red (subst-type-rs-nonredundant rst)
... | Inr ¬ub =
RTRules pt ¬red (subst-type-rs-nonredundant rst)
mutual
-- substituting a variable for an expression of the same
-- type does not change the type of the resulting term
subst-type : ∀{Γ Δ Δp x τ1 e1 τ e2} →
binders-disjoint e1 e2 →
hole-binders-disjoint e1 e2 →
e2 final →
(Γ ,, (x , τ1)) , Δ , Δp ⊢ e1 :: τ →
Γ , Δ , Δp ⊢ e2 :: τ1 →
Γ , Δ , Δp ⊢ [ e2 / x ] e1 :: τ
subst-type bd hbd fin2 TUnit wt2 = TUnit
subst-type bd hbd fin2 TNum wt2 = TNum
subst-type {x = x} bd hbd fin2 (TVar {x = y} y∈) wt2
with nat-dec y x
... | Inl refl
with nat-dec x x
... | Inr x≠x = abort (x≠x refl)
... | Inl refl
with some-inj y∈
... | refl = wt2
subst-type {x = x} bd hbd fin2 (TVar {x = y} y∈) wt2
| Inr y≠x
with nat-dec x y
... | Inl refl = abort (y≠x refl)
... | Inr x≠y = TVar y∈
subst-type {Γ = Γ} {x = x} bd hbd bu
(TLam {x = y} y# wts) wt2
with nat-dec y x
... | Inl refl
with nat-dec x x
... | Inr x≠x = abort (x≠x refl)
... | Inl refl = abort (some-not-none y#)
subst-type {Γ = Γ} {x = x} (BDLam ub bd) (HBDLam hbd) fin2
(TLam {x = y} y# wts) wt2
| Inr y≠x
with nat-dec x y
... | Inl refl = abort (y≠x refl)
... | Inr x≠y =
TLam y#
(subst-type
bd hbd fin2
(exchange-ta-Γ x≠y wts)
(weaken-ta-Γ (binders-fresh wt2 ub y#) wt2))
subst-type (BDAp bd1 bd2) (HBDAp hbd1 hbd2) fin2
(TAp wts1 wts2) wt2 =
TAp (subst-type bd1 hbd1 fin2 wts1 wt2)
(subst-type bd2 hbd2 fin2 wts2 wt2)
subst-type (BDInl bd) (HBDInl hbd) fin2 (TInl wts) wt2 =
TInl (subst-type bd hbd fin2 wts wt2)
subst-type (BDInr bd) (HBDInr hbd) fin2 (TInr wts) wt2 =
TInr (subst-type bd hbd fin2 wts wt2)
subst-type (BDMatch 1d2 (BDZRules _ (BDRules rd2 _)))
(HBDMatch 1hd2 (HBDZRules _ (HBDRules rhd2 _))) fin2
(TMatchZPre wts (RTOneRule rt)) wt2 =
TMatchZPre (subst-type 1d2 1hd2 fin2 wts wt2)
(RTOneRule (subst-type-r rd2 rhd2 fin2
rt wt2))
subst-type (BDMatch 1d2 (BDZRules _ (BDRules rd2 postd2)))
(HBDMatch 1hd2 (HBDZRules _ (HBDRules rhd2 posthd2))) fin2
(TMatchZPre wts (RTRules rt rst)) wt2 =
TMatchZPre (subst-type 1d2 1hd2 fin2 wts wt2)
(RTRules (subst-type-r rd2 rhd2 fin2 rt wt2)
(subst-type-rs postd2 posthd2 fin2
rst wt2))
subst-type (BDMatch 1d2
(BDZRules pred2 (BDRules rd2 predpost)))
(HBDMatch 1hd2
(HBDZRules prehd2 (HBDRules rhd2 prehdpost))) fin2
(TMatchNZPre wts fin1 pret
(RTOneRule rt) ¬red) wt2 =
TMatchNZPre (subst-type 1d2 1hd2 fin2 wts wt2)
(final-subst-final fin1 fin2)
(subst-type-rs pred2 prehd2 fin2 pret wt2)
(subst-type-rs (BDRules rd2 BDNoRules)
(HBDRules rhd2 HBDNoRules)
fin2 (RTOneRule rt) wt2)
λ{satm → ¬red (final-satormay-subst fin1 satm)}
subst-type (BDMatch 1d2 (BDZRules pred2 (BDRules rd2 postd2)))
(HBDMatch 1hd2
(HBDZRules prehd2 (HBDRules rhd2 posthd2))) fin2
(TMatchNZPre wts fin1 pret
(RTRules rt postt) ¬red) wt2 =
TMatchNZPre (subst-type 1d2 1hd2 fin2 wts wt2)
(final-subst-final fin1 fin2)
(subst-type-rs pred2 prehd2 fin2 pret wt2)
(subst-type-rs (BDRules rd2 postd2)
(HBDRules rhd2 posthd2)
fin2 (RTRules rt postt) wt2)
λ{satm → ¬red (final-satormay-subst fin1 satm)}
subst-type (BDPair bd1 bd2) (HBDPair hbd1 hbd2) fin2
(TPair wts1 wts2) wt2 =
TPair (subst-type bd1 hbd1 fin2 wts1 wt2)
(subst-type bd2 hbd2 fin2 wts2 wt2)
subst-type (BDFst bd) (HBDFst hbd) fin2 (TFst wts) wt2 =
TFst (subst-type bd hbd fin2 wts wt2)
subst-type (BDSnd bd) (HBDSnd hbd) fin2 (TSnd wts) wt2 =
TSnd (subst-type bd hbd fin2 wts wt2)
subst-type bd hbd fin2 (TEHole u∈Δ st) wt2 =
TEHole u∈Δ (STSubst st wt2)
subst-type (BDHole bdσ bd) (HBDHole hbdσ hbd) fin2
(THole u∈Δ st wts) wt2 =
THole u∈Δ (STSubst st wt2)
(subst-type bd hbd fin2 wts wt2)
subst-type-rs : ∀{Γ Δ Δp x τ1 rs τ ξ τ' e2} →
binders-disjoint-rs rs e2 →
hole-binders-disjoint-rs rs e2 →
e2 final →
(Γ ,, (x , τ1)) , Δ , Δp ⊢ rs ::s τ [ ξ ]=> τ' →
Γ , Δ , Δp ⊢ e2 :: τ1 →
Γ , Δ , Δp ⊢ [ e2 / x ]rs rs ::s τ [ ξ ]=> τ'
subst-type-rs (BDRules rd2 rsd2)
(HBDRules rhd2 rshd2) fin2 (RTOneRule rt) wt2 =
RTOneRule (subst-type-r rd2 rhd2 fin2 rt wt2)
subst-type-rs (BDRules rd2 rsd2)
(HBDRules rhd2 rshd2) fin2 (RTRules rt rst) wt2 =
RTRules (subst-type-r rd2 rhd2 fin2 rt wt2)
(subst-type-rs rsd2 rshd2 fin2 rst wt2)
subst-type-r : ∀{Γ Δ Δp x τ1 r τ ξ τ' e2} →
binders-disjoint-r r e2 →
hole-binders-disjoint-r r e2 →
e2 final →
(Γ ,, (x , τ1)) , Δ , Δp ⊢ r :: τ [ ξ ]=> τ' →
Γ , Δ , Δp ⊢ e2 :: τ1 →
Γ , Δ , Δp ⊢ [ e2 / x ]r r :: τ [ ξ ]=> τ'
subst-type-r {Γ = Γ} {Δ = Δ} {x = x} {τ1 = τ1} {e2 = e2}
(BDRule {p = p} pd2 1d2)
(HBDRule {p = p} phd2 1hd2) fin2
(RTRule {Γp = Γp} pt Γ,##Γp wts)
wt2
with unbound-in-p-dec x p
... | Inr ¬ub =
abort (¬ub (apart-Γp-unbound-in-p
pt
(disjoint-singleton-apart
(union-disjoint-l Γ,##Γp))))
... | Inl ub rewrite (∪-assoc (■ (x , τ1)) Γ Γp) =
RTRule pt
(union-disjoint-r {Γ1 = ■ (x , τ1)} {Γ2 = Γ} Γ,##Γp)
(subst-type 1d2 1hd2 fin2 wts (weaken-ta-Γ∪ frsh wt2))
where
frsh : ∀{z} →
dom Γp z →
fresh z e2
frsh {z = z} z∈Γp =
binders-fresh wt2
(dom-Γp-unbound-in pt z∈Γp pd2)
z#Γ
where
z#Γ : z # Γ
z#Γ with Γ z in Γz
... | None = refl
... | Some τ =
abort (some-not-none
(! Γz · apart-union-r (■ (x , τ1)) Γ z
(π2 Γ,##Γp z z∈Γp)))
-- the substituions emitted by a pattern match
-- make the same typing assumptions as the pattern
mat-substs-type : ∀{Γ Δ Δp e τ p ξ Γp θ} →
Γ , Δ , Δp ⊢ e :: τ →
Δp ⊢ p :: τ [ ξ ]⊣ Γp →
Γ ## Γp →
(e ·: τ ▹ p ⊣ θ) →
Γ , Δ , Δp ⊢ θ :sl: Γp
mat-substs-type wt PTUnit Γ##Γp MUnit = STEmpty
mat-substs-type wt PTNum Γ##Γp MNum = STEmpty
mat-substs-type {Γ = Γ} {Δ = Δ} {Δp = Δp}
{e = e} {τ = τ}
wt PTVar Γ##Γp (MVar {x = x}) =
tr (λ qq → Γ , Δ , Δp ⊢ (e , τ , x) :: [] :sl: qq)
(∪-identityʳ (■ (x , τ)))
(STExtend (disjoint-singleton-apart (##-sym Γ##Γp)) STEmpty wt)
mat-substs-type (TInl wt) (PTInl pt) Γ##Γp (MInl mat) =
mat-substs-type wt pt Γ##Γp mat
mat-substs-type (TInr wt) (PTInr pt) Γ##Γp (MInr mat) =
mat-substs-type wt pt Γ##Γp mat
mat-substs-type {Γ = Γ} wt
(PTPair {Γ1 = Γ1} {Γ2 = Γ2} Γ1##Γ2 pt1 pt2)
Γ##Γp
(MPair mat1 mat2)
with wt
... | TPair wt1 wt2 =
substs-concat-type
(mat-substs-type wt1 pt1
(##-sym (union-disjoint-l {Γ1 = Γ1} {Γ2 = Γ2}
(##-sym Γ##Γp)))
mat1)
(mat-substs-type wt2 pt2
(##-sym (union-disjoint-r {Γ1 = Γ1} {Γ2 = Γ2}
(##-sym Γ##Γp)))
mat2)
mat-substs-type {Γ = Γ} wt
(PTPair {Γ1 = Γ1} {Γ2 = Γ2} Γ1##Γ2 pt1 pt2)
Γ##Γp
(MNotIntroPair ni mat1 mat2) =
substs-concat-type
(mat-substs-type (TFst wt) pt1
(##-sym (union-disjoint-l {Γ1 = Γ1} {Γ2 = Γ2}
(##-sym Γ##Γp)))
mat1)
(mat-substs-type (TSnd wt) pt2
(##-sym (union-disjoint-r {Γ1 = Γ1} {Γ2 = Γ2}
(##-sym Γ##Γp)))
mat2)
mat-substs-type wt PTWild Γ##Γp MWild = STEmpty
-- appling a series of substitution for variables to expressions
-- of the same type does not change the type of the resulting term
substs-type : ∀{Γ Δ Δp θ Γθ e τ} →
θ simultaneous →
Γ , Δ , Δp ⊢ θ :sl: Γθ →
(Γθ ∪ Γ) , Δ , Δp ⊢ e :: τ →
Γ , Δ , Δp ⊢ apply-substs θ e :: τ
substs-type SθEmpty STEmpty wt = wt
substs-type {Γ = Γ} {Δ = Δ} {Δp = Δp}
{θ = (d , τ' , y) :: θ} {e = e} {τ = τ}
(SθExtend yubθ sim)
(STExtend {Γθ = Γθ} {τ = τ'} {y = y} y#Γ wst wtd)
wt =
TAp (TLam y#Γ
(substs-type {Γθ = Γθ}
sim
(weaken-θ-∪Γ {Γ' = ■ (y , τ')} frsh wst)
(tr (λ qq → qq , Δ , Δp ⊢ e :: τ) eq wt)))
wtd
where
eq : ((Γθ ,, (y , τ')) ∪ Γ) == (Γθ ∪ (Γ ,, (y , τ')))
eq = ap1 (λ qq → qq ∪ Γ)
(∪-comm (■ (y , τ')) Γθ
(apart-singleton-disjoint
(unbound-in-θ-apart-Γθ wst
yubθ))) ·
∪-assoc Γθ (■ (y , τ')) Γ
frsh : ∀{x} →
dom (■ (y , τ')) x →
fresh-θ x θ
frsh x∈■ with dom-singleton-eq x∈■
... | refl = binders-fresh-θ wst yubθ y#Γ