-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontexts.agda
64 lines (52 loc) · 1.91 KB
/
contexts.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
open import Prelude
open import Nat
module contexts where
-- we represent contexts as functions from variable names
-- to possible bindings. for simplicity, this mechanization
-- assumes all variable names are natural numbers
_ctx : Set → Set
A ctx = Nat → Maybe A
-- convenient shorthand for the
-- (unique up to function extensionality) empty context
∅ : {A : Set} → A ctx
∅ _ = None
-- the domain of a context is those naturals
-- which cuase it to emit some τ
dom : {A : Set} → A ctx → Nat → Set
dom {A} Γ x = Σ[ τ ∈ A ] (Γ x == Some τ)
-- membership, or presence, in a context
_∈_ : {A : Set} (p : Nat × A) → (Γ : A ctx) → Set
(x , τ) ∈ Γ = (Γ x) == Some τ
-- apartness for contexts
_#_ : {A : Set} (n : Nat) →
(Γ : A ctx) →
Set
x # Γ = (Γ x) == None
-- disjoint contexts are those which share no mappings
_##_ : {A : Set} → A ctx → A ctx → Set
_##_ {A} Γ1 Γ2 =
((x : Nat) → dom Γ1 x → x # Γ2) ×
((x : Nat) → dom Γ2 x → x # Γ1)
-- WARNING : this union is asymmetric unless the
-- contexts are disjoint. the left hand side context is
-- preferred when there is an overlap
_∪_ : {A : Set} → A ctx → A ctx → A ctx
(Γ1 ∪ Γ2) x with Γ1 x
... | Some τ = Some τ
... | None = Γ2 x
-- the singleton context
■_ : {A : Set} → (Nat × A) → A ctx
(■ (x , τ)) y with nat-dec x y
... | Inl refl = Some τ
... | Inr _ = None
infix 25 ■_
-- context extension. note that due to the asymmetry of unions,
-- this will update the binding of x if x is not apart from Γ
_,,_ : {A : Set} → A ctx → (Nat × A) → A ctx
(Γ ,, (x , τ)) = (■ (x , τ)) ∪ Γ
infixl 10 _,,_
-- difference. Γ1 but with any element of Γ2 removed
_∖_ : {A : Set} → A ctx → A ctx → A ctx
(Γ1 ∖ Γ2) x with Γ2 x
... | Some _ = None
... | None = Γ1 x