forked from hazelgrove/hazelnut-dynamics-agda
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtyping-subst.agda
318 lines (279 loc) · 20.1 KB
/
typing-subst.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
open import Nat
open import Prelude
open import core-type
open import core-exp
open import core-subst
open import core
open import weakening
open import lemmas-index
open import lemmas-ctx
open import lemmas-consistency
open import lemmas-meet
open import lemmas-subst
open import lemmas-wf
module typing-subst where
-- TtSub section
consist-sub : ∀{m τ1 τ2 τ3} → τ2 ~ τ3 → TTSub m τ1 τ2 ~ TTSub m τ1 τ3
consist-sub ConsistBase = ConsistBase
consist-sub {m} (ConsistVar {x}) with natEQ m x
... | Inl refl = ~refl
... | Inr neq = ~refl
consist-sub ConsistHole1 = ConsistHole1
consist-sub ConsistHole2 = ConsistHole2
consist-sub (ConsistArr con1 con2) = ConsistArr (consist-sub con1) (consist-sub con2)
consist-sub (ConsistForall con) = ConsistForall (consist-sub con)
nat-shift-miss : (t x : Nat) → t ≠ ↑Nat t 1 x
nat-shift-miss Z x ()
nat-shift-miss (1+ t) Z ()
nat-shift-miss (1+ t) (1+ x) eq = nat-shift-miss t x (1+inj _ _ eq)
sub-shift-miss : (t : Nat) → (τ' τ : htyp) → TTSub t τ' (↑ t 1 τ) == τ
sub-shift-miss t τ' b = refl
sub-shift-miss t τ' (T x) with natEQ t (↑Nat t 1 x)
... | Inl eq = abort (nat-shift-miss _ _ eq)
... | Inr neq rewrite ↓↑Nat-invert Z t x rewrite ↑NatZ t x = refl
sub-shift-miss t τ' ⦇-⦈ = refl
sub-shift-miss t τ' (τ1 ==> τ2) rewrite sub-shift-miss t τ' τ1 rewrite sub-shift-miss t τ' τ2 = refl
sub-shift-miss t τ' (·∀ τ) rewrite sub-shift-miss (1+ t) τ' τ = refl
some-equation-nat : (n m x : Nat) → ↓Nat (1+ n nat+ m) 1 (↑Nat n 1 x) == ↑Nat n 1 (↓Nat (n nat+ m) 1 x)
some-equation-nat Z m x = refl
some-equation-nat (1+ n) m Z = refl
some-equation-nat (1+ n) m (1+ x) rewrite some-equation-nat n m x = refl
some-equation : (n m : Nat) → (τ : htyp) → ↓ (1+ n nat+ m) 1 (↑ n 1 τ) == ↑ n 1 (↓ (n nat+ m) 1 τ)
some-equation n m b = refl
some-equation n m (T x) rewrite some-equation-nat n m x = refl
some-equation n m ⦇-⦈ = refl
some-equation n m (τ1 ==> τ2) rewrite some-equation n m τ1 rewrite some-equation n m τ2 = refl
some-equation n m (·∀ τ) rewrite some-equation (1+ n) m τ = refl
other-equation-nat : (m n x : Nat) → ↑Nat m 1 (↑Nat (m nat+ n) 1 x) == ↑Nat (1+ m nat+ n) 1 (↑Nat m 1 x)
other-equation-nat Z n x = refl
other-equation-nat (1+ m) n Z = refl
other-equation-nat (1+ m) n (1+ x) rewrite other-equation-nat m n x = refl
other-equation : (m n : Nat) → (τ : htyp) → ↑ m 1 (↑ (m nat+ n) 1 τ) == ↑ (1+ m nat+ n) 1 (↑ m 1 τ)
other-equation m n b = refl
other-equation m n (T x) rewrite other-equation-nat m n x = refl
other-equation m n ⦇-⦈ = refl
other-equation m n (τ1 ==> τ2) rewrite other-equation m n τ1 rewrite other-equation m n τ2 = refl
other-equation m n (·∀ τ) rewrite other-equation (1+ m) n τ = refl
sub-incr : (m x : Nat) → (τ : htyp) → TTSub (1+ m) τ (T (1+ x)) == ↑ Z 1 (TTSub m τ (T x))
sub-incr m x τ with natEQ m x
... | Inr neq = refl
... | Inl refl rewrite sym (some-equation Z m (↑ 0 (1+ m) τ)) rewrite ↑compose Z (1+ m) τ = refl
sub-shift : (n m : Nat) → (τ' τ : htyp) → TTSub (1+ n nat+ m) τ' (↑ n 1 τ) == ↑ n 1 (TTSub (n nat+ m) τ' τ)
sub-shift n m τ' b = refl
sub-shift n m τ' ⦇-⦈ = refl
sub-shift n m τ' (τ1 ==> τ2) rewrite sub-shift n m τ' τ1 rewrite sub-shift n m τ' τ2 = refl
sub-shift n m τ' (·∀ τ) rewrite sub-shift (1+ n) m τ' τ = refl
sub-shift Z m τ' (T x) with natEQ m x
... | Inl refl rewrite sym (↑compose Z (1+ m) τ') rewrite some-equation Z m (↑ 0 (1+ m) τ') = refl
... | Inr neq = refl
sub-shift (1+ n) m τ' (T Z) = refl
sub-shift (1+ n) m τ' (T (1+ x)) with sub-shift n m τ' (T x)
... | eq
rewrite sub-incr (1+ (n nat+ m)) (↑Nat n 1 x) τ'
rewrite sub-incr (n nat+ m) x τ'
rewrite eq = other-equation Z n _
inctx-subst : ∀{m τ1 n Γ τ2} → n , τ2 ∈ Γ → n , TTSub m τ1 τ2 ∈ TCtxSub m τ1 Γ
inctx-subst {Z} {τ1} (InCtxSkip {τ = τ} inctx) rewrite sub-shift-miss Z τ1 τ = inctx
inctx-subst {1+ m} {τ1} (InCtxSkip {τ = τ} inctx) rewrite sub-shift Z m τ1 τ = InCtxSkip (inctx-subst inctx)
inctx-subst InCtxZ = InCtxZ
inctx-subst (InCtx1+ inctx) = InCtx1+ (inctx-subst inctx)
wf-subst : ∀{m τ1 τ2 Γ} → ∅ ⊢ τ1 wf → Γ ⊢ τ2 wf → TCtxSub m τ1 Γ ⊢ TTSub m τ1 τ2 wf
wf-subst wf1 (WFSkip wf2) = weakening-wf-var (wf-subst wf1 wf2)
wf-subst {Z} {τ1} wf1 WFVarZ rewrite ↓↑-invert {Z} {Z} {τ1} rewrite ↑Z Z τ1 = weakening-wf wf1
wf-subst {1+ m} wf1 WFVarZ = WFVarZ
wf-subst {Z} wf1 (WFVarS wf2) = wf2
wf-subst {1+ m} {τ1} wf1 (WFVarS {n = n} wf2) rewrite sub-incr m n τ1 = wf-inc (wf-subst {m} wf1 wf2)
wf-subst wf1 WFBase = WFBase
wf-subst wf1 WFHole = WFHole
wf-subst wf1 (WFArr wf2 wf3) = WFArr (wf-subst wf1 wf2) (wf-subst wf1 wf3)
wf-subst wf1 (WFForall wf2) = WFForall (wf-subst wf1 wf2)
gt-neq : (n m : Nat) → 1+ (n nat+ m) ≠ n
gt-neq Z m ()
gt-neq (1+ n) m eq = gt-neq n m ((1+inj _ _ eq))
other-shift-miss : (n m : Nat) → ↓Nat (1+ (n nat+ m)) 1 n == n
other-shift-miss Z m = refl
other-shift-miss (1+ n) m rewrite other-shift-miss n m = refl
some-hit : (n m l : Nat) → ↓Nat (l nat+ n) 1 (↑Nat l (1+ n) (l nat+ m)) == l nat+ (n nat+ m)
some-hit Z m Z = refl
some-hit (1+ n) m Z rewrite some-hit n m Z = refl
some-hit n m (1+ l) rewrite some-hit n m l = refl
some-other-equation-nat : (n m l k x : Nat) → ↓Nat (k nat+ (l nat+ (n nat+ m))) 1 (↑Nat k (1+ (l nat+ (n nat+ m))) x) ==
↓Nat (k nat+ (l nat+ n)) 1 (↑Nat (k nat+ l) (1+ n) (↓Nat (k nat+ (l nat+ m)) 1 (↑Nat k (1+ (l nat+ m)) x)))
some-other-equation-nat Z m Z Z x = refl
some-other-equation-nat (1+ n) m Z Z x rewrite some-other-equation-nat n m Z Z x = refl
some-other-equation-nat n m (1+ l) Z x rewrite some-other-equation-nat n m l Z x = refl
some-other-equation-nat n m l (1+ k) Z = refl
some-other-equation-nat n m l (1+ k) (1+ x) rewrite some-other-equation-nat n m l k x = refl
some-other-equation : (n m l k : Nat) → (τ : htyp) →
↓ (k nat+ (l nat+ (n nat+ m))) 1 (↑ k (1+ (l nat+ (n nat+ m))) τ) ==
↓ (k nat+ (l nat+ n)) 1 (↑ (k nat+ l) (1+ n) (↓ (k nat+ (l nat+ m)) 1 (↑ k (1+ (l nat+ m)) τ)))
some-other-equation n m l k b = refl
some-other-equation n m l k (T x) rewrite some-other-equation-nat n m l k x = refl
some-other-equation n m l k ⦇-⦈ = refl
some-other-equation n m l k (τ ==> τ₁) rewrite some-other-equation n m l k τ rewrite some-other-equation n m l k τ₁ = refl
some-other-equation n m l k (·∀ τ) rewrite some-other-equation n m l (1+ k) τ = refl
an-inequality : (n m l x : Nat) → (l nat+ (n nat+ m)) == (↓Nat (l nat+ n) 1 (↑Nat l (1+ n) x)) → (l nat+ m) == x
an-inequality Z m l x eq rewrite nat+Z l rewrite ↓↑Nat-invert Z l x rewrite ↑NatZ l x = eq
an-inequality (1+ n) m Z x eq = an-inequality n m Z x (1+inj _ _ eq)
an-inequality n m (1+ l) (1+ x) eq rewrite an-inequality n m l x (1+inj _ _ eq) = refl
extra-equation : (n m l x : Nat) → (↓Nat (l nat+ (n nat+ m)) 1 (↓Nat (l nat+ n) 1 (↑Nat l (1+ n) x))) == (↓Nat (l nat+ n) 1 (↑Nat l (1+ n) (↓Nat (l nat+ m) 1 x)))
extra-equation Z m Z Z = refl
extra-equation Z m Z (1+ x) = refl
extra-equation (1+ n) m Z x rewrite extra-equation n m Z x = refl
extra-equation n m (1+ l) Z = refl
extra-equation n m (1+ l) (1+ x) rewrite extra-equation n m l x = refl
other-sub-shift : (n m l : Nat) → (τ1 τ2 : htyp) → TTSub (l nat+ (n nat+ m)) τ1 (↓ (l nat+ n) 1 (↑ l (1+ n) τ2)) == ↓ (l nat+ n) 1 (↑ l (1+ n) (TTSub (l nat+ m) τ1 τ2))
other-sub-shift n m l τ1 b = refl
other-sub-shift n m l τ1 (T x) with natEQ (l nat+ m) x
other-sub-shift n m l τ1 (T x) | Inl refl rewrite some-hit n m l rewrite natEQrefl {l nat+ (n nat+ m)} = some-other-equation n m l Z τ1
other-sub-shift n m l τ1 (T x) | Inr neq with natEQ (l nat+ (n nat+ m)) (↓Nat (l nat+ n) 1 (↑Nat l (1+ n) x))
other-sub-shift n m l τ1 (T x) | Inr neq | Inl eq = abort (neq (an-inequality n m l x eq))
other-sub-shift n m l τ1 (T x) | Inr neq | Inr _ rewrite extra-equation n m l x = refl
other-sub-shift n m l τ1 ⦇-⦈ = refl
other-sub-shift n m l τ1 (τ2 ==> τ3) rewrite other-sub-shift n m l τ1 τ2 rewrite other-sub-shift n m l τ1 τ3 = refl
other-sub-shift n m l τ1 (·∀ τ2) rewrite other-sub-shift n m (1+ l) τ1 τ2 = refl
gt-shift : (n m : Nat) → ↓Nat n 1 (1+ (n nat+ m)) == (n nat+ m)
gt-shift Z m = refl
gt-shift (1+ n) m rewrite gt-shift n m = refl
other-sub-shift-miss-var : (n m l x : Nat) → (l nat+ n) ≠ ↓Nat (1+ (l nat+ (n nat+ m))) 1 (↑Nat l (1+ (1+ (n nat+ m))) x)
other-sub-shift-miss-var Z m Z x ()
other-sub-shift-miss-var (1+ n) m Z x eq = other-sub-shift-miss-var n m Z x (1+inj _ _ eq)
other-sub-shift-miss-var n m (1+ l) Z ()
other-sub-shift-miss-var n m (1+ l) (1+ x) eq = other-sub-shift-miss-var n m l x (1+inj _ _ eq)
an-equation : (n m l x : Nat) →
(↓Nat (l nat+ n) 1 (↓Nat (1+ (l nat+ (n nat+ m))) 1 (↑Nat l (1+ (1+ (n nat+ m))) x)))
== (↓Nat (l nat+ (n nat+ m)) 1 (↑Nat l (1+ (n nat+ m)) x))
an-equation Z m Z x = refl
an-equation (1+ n) m Z x rewrite an-equation n m Z x = refl
an-equation n m (1+ l) Z = refl
an-equation n m (1+ l) (1+ x) rewrite an-equation n m l x = refl
other-sub-shift-miss : (n m l : Nat) → (τ1 τ2 : htyp) → TTSub (l nat+ n) τ2 (↓ (1+ (l nat+ (n nat+ m))) 1 (↑ l (1+ (1+ (n nat+ m))) τ1)) == (↓ (l nat+ (n nat+ m)) 1 (↑ l (1+ (n nat+ m)) τ1))
other-sub-shift-miss n m l b τ2 = refl
other-sub-shift-miss n m l (T x) τ2 with natEQ (l nat+ n) (↓Nat (1+ (l nat+ (n nat+ m))) 1 (↑Nat l (1+ (1+ (n nat+ m))) x))
... | Inl eq = abort (other-sub-shift-miss-var n m l x eq)
... | Inr _ rewrite an-equation n m l x = refl
other-sub-shift-miss n m l ⦇-⦈ τ2 = refl
other-sub-shift-miss n m l (τ1 ==> τ3) τ2 rewrite other-sub-shift-miss n m l τ1 τ2 rewrite other-sub-shift-miss n m l τ3 τ2 = refl
other-sub-shift-miss n m l (·∀ τ1) τ2 rewrite other-sub-shift-miss n m (1+ l) τ1 τ2 = refl
neq-relation : (n m x : Nat) → n ≠ x → 1+ (n nat+ m) ≠ x → (n nat+ m) ≠ (↓Nat n 1 x)
neq-relation Z m Z neq1 neq2 eq = neq1 refl
neq-relation Z m (1+ x) neq1 neq2 refl = neq2 refl
neq-relation (1+ n) m (1+ x) neq1 neq2 eq = neq-relation n m x (\ {refl → neq1 refl}) (\ {refl → neq2 refl}) (1+inj _ _ eq)
neqs-relation : (n m x : Nat) → n ≠ x → 1+ (n nat+ m) ≠ x → n ≠ ↓Nat (1+ (n nat+ m)) 1 x
neqs-relation Z m Z neq1 neq2 eq = neq1 refl
neqs-relation (1+ n) m (1+ x) neq1 neq2 eq = neqs-relation n m x (\{ refl → neq1 refl}) (\{ refl → neq2 refl}) (1+inj _ _ eq)
other-equation-nat-down : (n m x : Nat) → ↓Nat (n nat+ m) 1 (↓Nat n 1 x) == ↓Nat n 1 (↓Nat (1+ (n nat+ m)) 1 x)
other-equation-nat-down Z Z Z = refl
other-equation-nat-down Z m (1+ x) = refl
other-equation-nat-down Z (1+ m) Z = refl
other-equation-nat-down (1+ n) Z Z = refl
other-equation-nat-down (1+ n) m Z = refl
other-equation-nat-down (1+ n) m (1+ x) rewrite other-equation-nat-down n m x = refl
subsub : (n m : Nat) → (τ1 τ2 τ3 : htyp) → TTSub (n nat+ m) τ1 (TTSub n τ2 τ3) == TTSub n (TTSub m τ1 τ2) (TTSub (1+ n nat+ m) τ1 τ3)
subsub n m τ1 τ2 b = refl
subsub n m τ1 τ2 ⦇-⦈ = refl
subsub n m τ1 τ2 (τ3 ==> τ4) rewrite subsub n m τ1 τ2 τ3 rewrite subsub n m τ1 τ2 τ4 = refl
subsub n m τ1 τ2 (·∀ τ3) rewrite subsub (1+ n) m τ1 τ2 τ3 = refl
subsub n m τ1 τ2 (T x) with natEQ n x
subsub n m τ1 τ2 (T x) | Inl refl with natEQ (1+ (n nat+ m)) n
subsub n m τ1 τ2 (T x) | Inl refl | Inl eq = abort (gt-neq _ _ eq)
subsub n m τ1 τ2 (T x) | Inl refl | Inr _ rewrite other-shift-miss n m with natEQ n n
subsub n m τ1 τ2 (T x) | Inl refl | Inr _ | Inr neq = abort (neq refl)
subsub n m τ1 τ2 (T x) | Inl refl | Inr _ | Inl refl = other-sub-shift n m Z τ1 τ2
subsub n m τ1 τ2 (T x) | Inr neq with natEQ (1+ (n nat+ m)) x
subsub n m τ1 τ2 (T x) | Inr neq | Inl refl
rewrite gt-shift n m rewrite natEQrefl {n nat+ m}
rewrite other-sub-shift-miss n m Z τ1 (TTSub m τ1 τ2) = refl
subsub n m τ1 τ2 (T x) | Inr neq1 | Inr neq2 with natEQ (n nat+ m) (↓Nat n 1 x)
subsub n m τ1 τ2 (T x) | Inr neq1 | Inr neq2 | Inl eq = abort (neq-relation _ _ _ neq1 neq2 eq)
subsub n m τ1 τ2 (T x) | Inr neq1 | Inr neq2 | Inr _ with natEQ n (↓Nat (1+ (n nat+ m)) 1 x)
subsub n m τ1 τ2 (T x) | Inr neq1 | Inr neq2 | Inr _ | Inl eq = abort (neqs-relation n m x neq1 neq2 eq)
subsub n m τ1 τ2 (T x) | Inr neq1 | Inr neq2 | Inr _ | Inr neq3 rewrite other-equation-nat-down n m x = refl
wt-TtSub-strong : ∀{m τ1 τ2 Γ d} →
(⊢ Γ ctxwf) →
(∅ ⊢ τ1 wf) →
(Γ ⊢ d :: τ2) →
(TCtxSub m τ1 Γ ⊢ TtSub m τ1 d :: TTSub m τ1 τ2)
wt-TtSub-strong ctxwf wf TAConst = TAConst
wt-TtSub-strong ctxwf wf (TAAp wt wt₁) = TAAp (wt-TtSub-strong ctxwf wf wt) (wt-TtSub-strong ctxwf wf wt₁)
wt-TtSub-strong {m} {τ1} ctxwf wf (TATAp {τ1 = τ2} {τ2 = τ3} x wt refl) = TATAp (wf-subst wf x) (wt-TtSub-strong ctxwf wf wt) (sym (subsub Z m τ1 τ2 τ3))
wt-TtSub-strong ctxwf wf TAEHole = TAEHole
wt-TtSub-strong ctxwf wf (TANEHole wt) = TANEHole (wt-TtSub-strong ctxwf wf wt)
wt-TtSub-strong ctxwf wf (TACast wt x con) = TACast (wt-TtSub-strong ctxwf wf wt) (wf-subst wf x) (consist-sub con)
wt-TtSub-strong ctxwf wf (TALam x wt) = TALam (wf-subst wf x) (wt-TtSub-strong (CtxWFVar x ctxwf) wf wt)
wt-TtSub-strong ctxwf wf (TATLam wt) = TATLam (wt-TtSub-strong (CtxWFTVar ctxwf) wf wt)
wt-TtSub-strong ctxwf wf (TAVar x) = TAVar (inctx-subst x)
wt-TtSub-strong ctxwf wf (TAFailedCast wt GBase GBase incon) = abort (incon ConsistBase)
wt-TtSub-strong ctxwf wf (TAFailedCast wt GArr GArr incon) = abort (incon (ConsistArr ConsistHole1 ConsistHole1))
wt-TtSub-strong ctxwf wf (TAFailedCast wt GForall GForall incon) = abort (incon (ConsistForall ConsistHole1))
wt-TtSub-strong ctxwf wf (TAFailedCast wt GBase GArr incon) = TAFailedCast (wt-TtSub-strong ctxwf wf wt) GBase GArr incon
wt-TtSub-strong ctxwf wf (TAFailedCast wt GBase GForall incon) = TAFailedCast (wt-TtSub-strong ctxwf wf wt) GBase GForall incon
wt-TtSub-strong ctxwf wf (TAFailedCast wt GArr GBase incon) = TAFailedCast (wt-TtSub-strong ctxwf wf wt) GArr GBase incon
wt-TtSub-strong ctxwf wf (TAFailedCast wt GArr GForall incon) = TAFailedCast (wt-TtSub-strong ctxwf wf wt) GArr GForall incon
wt-TtSub-strong ctxwf wf (TAFailedCast wt GForall GBase incon) = TAFailedCast (wt-TtSub-strong ctxwf wf wt) GForall GBase incon
wt-TtSub-strong ctxwf wf (TAFailedCast wt GForall GArr incon) = TAFailedCast (wt-TtSub-strong ctxwf wf wt) GForall GArr incon
wt-TtSub : ∀{d τ1 τ2} →
∅ ⊢ τ1 wf →
(TVar, ∅) ⊢ d :: τ2 →
∅ ⊢ TtSub Z τ1 d :: TTSub Z τ1 τ2
wt-TtSub wf wt = wt-TtSub-strong (CtxWFTVar CtxWFEmpty) wf wt
no-fvs-lemma-type : ∀{Γ t1 t2 τ} → (m : Nat) → context-counter Γ t1 t2 → Γ ⊢ τ wf → ↑ t2 m τ == τ
no-fvs-lemma-type m (CtxCtVar ctxct) (WFSkip wf) = no-fvs-lemma-type m ctxct wf
no-fvs-lemma-type m (CtxCtTVar ctxct) WFVarZ = refl
no-fvs-lemma-type m (CtxCtTVar ctxct) (WFVarS wf) with h1 (no-fvs-lemma-type m ctxct wf)
where
h1 : ∀{x1 x2} → T x1 == T x2 → x1 == x2
h1 refl = refl
... | eq rewrite eq = refl
no-fvs-lemma-type m ctxct WFBase = refl
no-fvs-lemma-type m ctxct WFHole = refl
no-fvs-lemma-type m ctxct (WFArr wf wf₁) rewrite no-fvs-lemma-type m ctxct wf rewrite no-fvs-lemma-type m ctxct wf₁ = refl
no-fvs-lemma-type m ctxct (WFForall wf) rewrite no-fvs-lemma-type m (CtxCtTVar ctxct) wf = refl
inc-var-eq : ∀{x1 x2 : Nat} → (eq : Prelude._==_ {A = ihexp} (X x1) (X x2)) → (Prelude._==_ {A = ihexp} (X (1+ x1)) (X (1+ x2)))
inc-var-eq refl = refl
no-fvs-lemma : ∀{Γ t1 t2 d τ} → (n m : Nat) → ⊢ Γ ctxwf → context-counter Γ t1 t2 → Γ ⊢ d :: τ → ↑d t1 n t2 m d == d
no-fvs-lemma n m ctxwf ctxct TAConst = refl
no-fvs-lemma n m ctxwf (CtxCtVar ctxct) (TAVar InCtxZ) = refl
no-fvs-lemma n m (CtxWFVar x₁ ctxwf) (CtxCtVar ctxct) (TAVar (InCtx1+ x)) = inc-var-eq (no-fvs-lemma n m ctxwf ctxct (TAVar x))
no-fvs-lemma n m (CtxWFTVar ctxwf) (CtxCtTVar ctxct) (TAVar (InCtxSkip x)) = no-fvs-lemma n m ctxwf ctxct (TAVar x)
no-fvs-lemma n m ctxwf ctxct (TALam x wt) rewrite no-fvs-lemma-type m ctxct x rewrite no-fvs-lemma n m (CtxWFVar x ctxwf) (CtxCtVar ctxct) wt = refl
no-fvs-lemma n m ctxwf ctxct (TATLam wt) rewrite no-fvs-lemma n m (CtxWFTVar ctxwf) (CtxCtTVar ctxct) wt = refl
no-fvs-lemma n m ctxwf ctxct (TAAp wt wt₁) rewrite no-fvs-lemma n m ctxwf ctxct wt rewrite no-fvs-lemma n m ctxwf ctxct wt₁ = refl
no-fvs-lemma n m ctxwf ctxct (TATAp x wt x₁) rewrite no-fvs-lemma-type m ctxct x rewrite no-fvs-lemma n m ctxwf ctxct wt = refl
no-fvs-lemma n m ctxwf ctxct TAEHole = refl
no-fvs-lemma n m ctxwf ctxct (TANEHole wt) rewrite no-fvs-lemma n m ctxwf ctxct wt = refl
no-fvs-lemma n m ctxwf ctxct (TACast wt x x₁) rewrite no-fvs-lemma-type m ctxct x rewrite no-fvs-lemma-type m ctxct (wf-ta ctxwf wt) rewrite no-fvs-lemma n m ctxwf ctxct wt = refl
no-fvs-lemma n m ctxwf ctxct (TAFailedCast wt x x₁ x₂) rewrite no-fvs-lemma n m ctxwf ctxct wt rewrite no-fvs-lemma-type m ctxct (wf-gnd x) rewrite no-fvs-lemma-type m ctxct (wf-gnd x₁) = refl
inctx-count1 : ∀{Γ n m τ1 τ2} → context-counter Γ n m → n , τ2 ∈ (Γ ctx+ (τ1 , ∅)) → τ2 == ↑ 0 m τ1
inctx-count1 {τ1 = τ1} CtxCtEmpty InCtxZ rewrite ↑Z Z τ1 = refl
inctx-count1 (CtxCtVar ctxct) (InCtx1+ inctx) = inctx-count1 ctxct inctx
inctx-count1 {m = 1+ m} {τ1 = τ1} (CtxCtTVar ctxct) (InCtxSkip inctx) rewrite inctx-count1 ctxct inctx rewrite ↑compose Z m τ1 = refl
inctx-count2 : ∀{Γ n m x τ1 τ2} → x ≠ n → context-counter Γ n m → x , τ2 ∈ (Γ ctx+ (τ1 , ∅)) → ↓Nat n 1 x , τ2 ∈ Γ
inctx-count2 neq CtxCtEmpty InCtxZ = abort (neq refl)
inctx-count2 neq (CtxCtVar ctxct) InCtxZ = InCtxZ
inctx-count2 neq (CtxCtVar ctxct) (InCtx1+ inctx) = InCtx1+ (inctx-count2 (\{refl → neq refl}) ctxct inctx)
inctx-count2 neq (CtxCtTVar ctxct) (InCtxSkip inctx) = InCtxSkip (inctx-count2 neq ctxct inctx)
wt-ttSub-helper : ∀{Γ n m d1 d2 τ1 τ2} →
(⊢ Γ ctxwf) →
(context-counter Γ n m) →
(∅ ⊢ d1 :: τ1) →
((Γ ctx+ (τ1 , ∅)) ⊢ d2 :: τ2) →
(Γ ⊢ ttSub n m d1 d2 :: τ2)
wt-ttSub-helper ctxwf ctxct wt1 TAConst = TAConst
wt-ttSub-helper ctxwf ctxct wt1 (TAAp wt2 wt3) = TAAp (wt-ttSub-helper ctxwf ctxct wt1 wt2) (wt-ttSub-helper ctxwf ctxct wt1 wt3)
wt-ttSub-helper ctxwf ctxct wt1 (TATAp x wt2 x₁) = TATAp (strengthen-wf-var-reverse x) (wt-ttSub-helper ctxwf ctxct wt1 wt2) x₁
wt-ttSub-helper ctxwf ctxct wt1 TAEHole = TAEHole
wt-ttSub-helper ctxwf ctxct wt1 (TANEHole wt2) = TANEHole (wt-ttSub-helper ctxwf ctxct wt1 wt2)
wt-ttSub-helper ctxwf ctxct wt1 (TACast wt2 x x₁) = TACast (wt-ttSub-helper ctxwf ctxct wt1 wt2) (strengthen-wf-var-reverse x) x₁
wt-ttSub-helper ctxwf ctxct wt1 (TAFailedCast wt2 x x₁ x₂) = TAFailedCast (wt-ttSub-helper ctxwf ctxct wt1 wt2) x x₁ x₂
wt-ttSub-helper {Γ} {n} {m} {d1} ctxwf ctxct wt1 (TALam {τ1 = τ} {d = d} x wt2) = TALam (strengthen-wf-var-reverse x) (wt-ttSub-helper {Γ = (τ , Γ)} (CtxWFVar (strengthen-wf-var-reverse x) ctxwf) (CtxCtVar ctxct) wt1 wt2)
wt-ttSub-helper {Γ} {n} {m} {d1} ctxwf ctxct wt1 (TATLam {d = d} wt2) = TATLam (wt-ttSub-helper {Γ = (TVar, Γ)} (CtxWFTVar ctxwf) (CtxCtTVar ctxct) wt1 wt2)
wt-ttSub-helper {Γ} {n} {m} ctxwf ctxct wt1 (TAVar {n = x} inctx) with natEQ x n
wt-ttSub-helper {Γ} {n} {m} {d1} ctxwf ctxct wt1 (TAVar inctx) | Inl refl with wf-ta CtxWFEmpty wt1
... | wf rewrite no-fvs-lemma n m CtxWFEmpty CtxCtEmpty wt1 rewrite inctx-count1 ctxct inctx rewrite no-fvs-lemma-type m CtxCtEmpty wf = weakening-wt wt1
wt-ttSub-helper {Γ} {n} {m} ctxwf ctxct wt1 (TAVar {n = x} inctx) | Inr neq = TAVar (inctx-count2 neq ctxct inctx)
wt-ttSub : ∀{d1 d2 τ1 τ2} →
(∅ ⊢ d1 :: τ1) →
((τ1 , ∅) ⊢ d2 :: τ2) →
(∅ ⊢ ttSub Z Z d1 d2 :: τ2)
wt-ttSub = wt-ttSub-helper CtxWFEmpty CtxCtEmpty